Intrusion Detection by Artificial Neural Networks

M. Turčaník, J. Baráth
{"title":"Intrusion Detection by Artificial Neural Networks","authors":"M. Turčaník, J. Baráth","doi":"10.23919/NTSP54843.2022.9920388","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach to intrusion detection using methods of artificial intelligence. Neural networks are suitable for use in intrusion detection systems. To analyze the suitability of using neural networks several data sets were created. They consist of a set of legitimate and malicious communications represented by equally represented samples of data streams, with the number of parameters used varying according to the input parameter optimization method used. For training of the neural networks were used 3 training algorithms: Levenberg–Marquardt algorithm, Bayesian regularization, and scaled conjugate gradient backpropagation algorithm. Dimensionality reduction can decrease the number of features to decrease computational complexity. Two methods are analyzed in the paper: principal component analysis and the stepwise selection method. These methods are compared with results achieved from the training of neural networks for a full set of parameters of the input data sets. The proposed topology of the artificial neural network obtains the probability of correct classification from 80.8 to 84.6% for selected test sets.","PeriodicalId":103310,"journal":{"name":"2022 New Trends in Signal Processing (NTSP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 New Trends in Signal Processing (NTSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/NTSP54843.2022.9920388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a new approach to intrusion detection using methods of artificial intelligence. Neural networks are suitable for use in intrusion detection systems. To analyze the suitability of using neural networks several data sets were created. They consist of a set of legitimate and malicious communications represented by equally represented samples of data streams, with the number of parameters used varying according to the input parameter optimization method used. For training of the neural networks were used 3 training algorithms: Levenberg–Marquardt algorithm, Bayesian regularization, and scaled conjugate gradient backpropagation algorithm. Dimensionality reduction can decrease the number of features to decrease computational complexity. Two methods are analyzed in the paper: principal component analysis and the stepwise selection method. These methods are compared with results achieved from the training of neural networks for a full set of parameters of the input data sets. The proposed topology of the artificial neural network obtains the probability of correct classification from 80.8 to 84.6% for selected test sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的入侵检测
本文提出了一种基于人工智能的入侵检测方法。神经网络适用于入侵检测系统。为了分析使用神经网络的适用性,我们创建了几个数据集。它们由一组合法的和恶意的通信组成,这些通信由相等表示的数据流样本表示,所使用的参数数量根据所使用的输入参数优化方法而变化。神经网络的训练采用了3种训练算法:Levenberg-Marquardt算法、Bayesian正则化算法和缩放共轭梯度反向传播算法。降维可以减少特征的数量,从而降低计算复杂度。本文分析了两种方法:主成分分析法和逐步选择法。将这些方法与对输入数据集的全部参数进行神经网络训练的结果进行了比较。所提出的人工神经网络拓扑对所选测试集的正确分类概率在80.8 ~ 84.6%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software Tool for Pronunciation Training of Specific English Terminology Simulation and Measurement of Optical Networks 10 and 100 Gb/s Investigation of the Potential Influence of Wind Farms on the VHF Tactical Links Performance Malware Signatures Detection with Neural Networks Implementation of True Current Amplifiers via Commercial Integrated Circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1