Exploiting Feature Diversity for Make-up Temporal Video Grounding

Xiujun Shu, Wei Wen, Taian Guo, Su He, Chen Wu, Ruizhi Qiao
{"title":"Exploiting Feature Diversity for Make-up Temporal Video Grounding","authors":"Xiujun Shu, Wei Wen, Taian Guo, Su He, Chen Wu, Ruizhi Qiao","doi":"10.1145/3552455.3555818","DOIUrl":null,"url":null,"abstract":"This technical report presents the 3rd winning solution for MTVG, a new task introduced in the 4-th Person in Context (PIC) Challenge at ACM MM 2022. MTVG aims at localizing the temporal boundary of the step in an untrimmed video based on a textual description. The biggest challenge of this task is the fine-grained video-text semantics of make-up steps. However, current methods mainly extract video features using action-based pre-trained models. As actions are more coarse-grained than make-up steps, action-based features are not suffi cient to provide fi ne-grained cues. To address this issue,we propose to achieve fi ne-grained representation via exploiting feature diversities. Specifi cally, we proposed a series of methods from feature extraction, network optimization, to model ensemble. As a result, we achieved 3rd place in the MTVG competition.","PeriodicalId":309164,"journal":{"name":"Proceedings of the 4th on Person in Context Workshop","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th on Person in Context Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3552455.3555818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This technical report presents the 3rd winning solution for MTVG, a new task introduced in the 4-th Person in Context (PIC) Challenge at ACM MM 2022. MTVG aims at localizing the temporal boundary of the step in an untrimmed video based on a textual description. The biggest challenge of this task is the fine-grained video-text semantics of make-up steps. However, current methods mainly extract video features using action-based pre-trained models. As actions are more coarse-grained than make-up steps, action-based features are not suffi cient to provide fi ne-grained cues. To address this issue,we propose to achieve fi ne-grained representation via exploiting feature diversities. Specifi cally, we proposed a series of methods from feature extraction, network optimization, to model ensemble. As a result, we achieved 3rd place in the MTVG competition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用特征多样性进行时序视频合成
本技术报告介绍了MTVG的第三个获奖解决方案,这是ACM MM 2022第四届情境中人(PIC)挑战赛中引入的新任务。MTVG的目的是在基于文本描述的未修剪视频中定位步骤的时间边界。这项任务的最大挑战是化妆步骤的细粒度视频文本语义。然而,目前的方法主要是使用基于动作的预训练模型提取视频特征。由于操作比补充步骤更粗粒度,基于操作的功能不足以提供细粒度的提示。为了解决这个问题,我们建议通过利用特征多样性来实现细粒度表示。具体来说,我们提出了从特征提取、网络优化到模型集成的一系列方法。结果,我们在MTVG比赛中获得了第三名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
STVGFormer Cascaded Decoding and Multi-Stage Inference for Spatio-Temporal Video Grounding Fine-grained Video Captioning via Precise Key Point Positioning Exploiting Feature Diversity for Make-up Temporal Video Grounding Human-centric Spatio-Temporal Video Grounding via the Combination of Mutual Matching Network and TubeDETR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1