{"title":"Using On-line Simulation for Adaptive Path Planning of UAVs","authors":"Farzad Kamrani, R. Ayani","doi":"10.1109/DS-RT.2007.45","DOIUrl":null,"url":null,"abstract":"In a surveillance mission, the task of Unmanned Aerial Vehicles (UAV) path planning can in some cases be addressed using Sequential Monte Carlo (SMC) simulation. If sufficient a priori information about the target and the environment is available an assessment of the future state of the target is obtained by the SMC simulation. This assessment is used in a set of \"what-if\" simulations to compare different alternative UAV paths. In a static environment this simulation can be conducted prior to the mission. However, if the environment is dynamic, it is required to run the \"what-if\" simulations on-line i.e. in real-time. In this paper the details of this on-line simulation approach in UAV path planning is studied and its performance is compared with two other methods: an off-line simulationaided path planning and an exhaustive search method. The conducted simulations indicate that the on-line simulation has generally a higher performance compared with the two other methods.","PeriodicalId":266467,"journal":{"name":"11th IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT'07)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DS-RT.2007.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44
Abstract
In a surveillance mission, the task of Unmanned Aerial Vehicles (UAV) path planning can in some cases be addressed using Sequential Monte Carlo (SMC) simulation. If sufficient a priori information about the target and the environment is available an assessment of the future state of the target is obtained by the SMC simulation. This assessment is used in a set of "what-if" simulations to compare different alternative UAV paths. In a static environment this simulation can be conducted prior to the mission. However, if the environment is dynamic, it is required to run the "what-if" simulations on-line i.e. in real-time. In this paper the details of this on-line simulation approach in UAV path planning is studied and its performance is compared with two other methods: an off-line simulationaided path planning and an exhaustive search method. The conducted simulations indicate that the on-line simulation has generally a higher performance compared with the two other methods.