Rule-Compliant Trajectory Repairing using Satisfiability Modulo Theories

Yuan-Chuen Lin, M. Althoff
{"title":"Rule-Compliant Trajectory Repairing using Satisfiability Modulo Theories","authors":"Yuan-Chuen Lin, M. Althoff","doi":"10.1109/iv51971.2022.9827357","DOIUrl":null,"url":null,"abstract":"Autonomous vehicles must comply with traffic rules. However, most motion planners do not explicitly consider all relevant traffic rules. Once traffic rule violations of an initially-planned trajectory are detected, there is often not enough time to replan the entire trajectory. To solve this problem, we propose to repair the initial trajectory by investigating the satisfiability modulo theories paradigm. This framework makes it efficient to reason whether and how the trajectory can be repaired and, at the same time, determine the part along the trajectory that can remain unchanged. Moreover, the robustness of traffic rule satisfaction is used to formulate a convex optimization problem for generating rule-compliant trajectories. We compare our approach with trajectory replanning and demonstrate its usefulness with traffic scenarios from the CommonRoad benchmark suite and recorded data. The evaluation result shows that rule-compliant trajectory repairing is computationally efficient and widely applicable.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Autonomous vehicles must comply with traffic rules. However, most motion planners do not explicitly consider all relevant traffic rules. Once traffic rule violations of an initially-planned trajectory are detected, there is often not enough time to replan the entire trajectory. To solve this problem, we propose to repair the initial trajectory by investigating the satisfiability modulo theories paradigm. This framework makes it efficient to reason whether and how the trajectory can be repaired and, at the same time, determine the part along the trajectory that can remain unchanged. Moreover, the robustness of traffic rule satisfaction is used to formulate a convex optimization problem for generating rule-compliant trajectories. We compare our approach with trajectory replanning and demonstrate its usefulness with traffic scenarios from the CommonRoad benchmark suite and recorded data. The evaluation result shows that rule-compliant trajectory repairing is computationally efficient and widely applicable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可满足模理论的符合规则轨迹修复
自动驾驶汽车必须遵守交通规则。然而,大多数运动规划者并没有明确考虑所有相关的交通规则。一旦检测到违反交通规则的初始规划轨迹,通常没有足够的时间来重新规划整个轨迹。为了解决这个问题,我们建议通过研究可满足模理论范式来修复初始轨迹。该框架可以有效地推断轨迹是否可以修复以及如何修复,同时确定轨迹沿线可以保持不变的部分。此外,利用交通规则满足的鲁棒性,构造了一个凸优化问题来生成符合规则的轨迹。我们将我们的方法与轨迹重新规划进行了比较,并展示了其在CommonRoad基准套件和记录数据的交通场景中的实用性。评价结果表明,该方法计算效率高,适用范围广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Conflict Mitigation for Cooperative Driving Control of Intelligent Vehicles Detecting vehicles in the dark in urban environments - A human benchmark A Sequential Decision-theoretic Method for Detecting Mobile Robots Localization Failures Scene Spatio-Temporal Graph Convolutional Network for Pedestrian Intention Estimation What Can be Seen is What You Get: Structure Aware Point Cloud Augmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1