Uncovering the Patterns in Pathology Ordering by Australian General Practitioners: A Data Mining Perspective

Zoe Yan Zhuang, L. Churilov, K. Sikaris
{"title":"Uncovering the Patterns in Pathology Ordering by Australian General Practitioners: A Data Mining Perspective","authors":"Zoe Yan Zhuang, L. Churilov, K. Sikaris","doi":"10.1109/HICSS.2006.513","DOIUrl":null,"url":null,"abstract":"Pathology ordering by General Practitioners (GPs) is a significant contributor to rising health care costs both in Australia and worldwide. A thorough understanding of the nature and patterns of pathology utilization is an essential requirement for addressing the issues of appropriate pathology orderings and possible over-utilization. This paper describes how Kohonen’s Self-Organizing Maps are used to discover the most typical patterns in pathology orderings for different patient groups. Test ordering data from a pathology company in Australia is analyzed; homogenous clusters of patients with similar ordering patterns are discovered and investigated, and possible management implications are discussed. The novelty of this approach is in using data mining techniques on pathology ordering data in order to provide a patient oriented perspective for understanding the nature of ordering patterns.","PeriodicalId":432250,"journal":{"name":"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HICSS.2006.513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Pathology ordering by General Practitioners (GPs) is a significant contributor to rising health care costs both in Australia and worldwide. A thorough understanding of the nature and patterns of pathology utilization is an essential requirement for addressing the issues of appropriate pathology orderings and possible over-utilization. This paper describes how Kohonen’s Self-Organizing Maps are used to discover the most typical patterns in pathology orderings for different patient groups. Test ordering data from a pathology company in Australia is analyzed; homogenous clusters of patients with similar ordering patterns are discovered and investigated, and possible management implications are discussed. The novelty of this approach is in using data mining techniques on pathology ordering data in order to provide a patient oriented perspective for understanding the nature of ordering patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示澳大利亚全科医生病理排序模式:数据挖掘视角
全科医生(全科医生)的病理排序是澳大利亚和世界范围内医疗保健费用上升的一个重要因素。彻底了解病理应用的性质和模式是解决适当病理排序和可能的过度使用问题的基本要求。本文描述了如何使用Kohonen的自组织图来发现不同患者群体的病理排序中最典型的模式。分析了澳大利亚一家病理公司的测试订购数据;发现并调查了具有相似排序模式的同质患者集群,并讨论了可能的管理含义。这种方法的新颖之处在于在病理排序数据上使用数据挖掘技术,以便为理解排序模式的本质提供面向患者的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supporting the Module Sequencing Decision in the ERP Implementation Process Flying Sinks: Heuristics for Movement in Sensor Networks Enterprise Architecture: A Social Network Perspective Document Clustering with Semantic Analysis Knowledge Extraction from Prostate Cancer Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1