On the Dynamic Positioning Control System of FPSO using Kalman Filtering Techniques

Youngkyu Ahn, K. Kijima, Y. Furukawa
{"title":"On the Dynamic Positioning Control System of FPSO using Kalman Filtering Techniques","authors":"Youngkyu Ahn, K. Kijima, Y. Furukawa","doi":"10.2534/JJASNAOE1968.2002.55","DOIUrl":null,"url":null,"abstract":"When a FPSO (Floating Production Storage and Offloading) is required to maintain the specified position during oil producing and offloading under the external forces such as ocean current, wind or wave, exact position measurement is firstly taken into consideration. GPS (Global Positioning System) is mainly used to measure ship's position. But the position measurements using GPS contain noise. This noise has large influence on DPS (Dynamic Positioning System), therefore it is necessary to remove the noise.In this paper, Inverse Linear Quadratic (ILQ) optimal servo theory using Kalman filter is applied to design control system of DPS. Generally, Kalman filter is to estimate the low-frequency motions of the vessel so that control can be applied to minimise the position error. But in this paper, Because we already consider motion of FPSO as low-frequency motion, Kalman filter is used to remove the measurement noise.The numerical simulations shows the performance of the combined Kalman filter and ILQ optimal servo system.","PeriodicalId":321056,"journal":{"name":"Journal of the Society of Naval Architects of Japan","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society of Naval Architects of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2534/JJASNAOE1968.2002.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When a FPSO (Floating Production Storage and Offloading) is required to maintain the specified position during oil producing and offloading under the external forces such as ocean current, wind or wave, exact position measurement is firstly taken into consideration. GPS (Global Positioning System) is mainly used to measure ship's position. But the position measurements using GPS contain noise. This noise has large influence on DPS (Dynamic Positioning System), therefore it is necessary to remove the noise.In this paper, Inverse Linear Quadratic (ILQ) optimal servo theory using Kalman filter is applied to design control system of DPS. Generally, Kalman filter is to estimate the low-frequency motions of the vessel so that control can be applied to minimise the position error. But in this paper, Because we already consider motion of FPSO as low-frequency motion, Kalman filter is used to remove the measurement noise.The numerical simulations shows the performance of the combined Kalman filter and ILQ optimal servo system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卡尔曼滤波技术的FPSO动态定位控制系统研究
当FPSO(浮式生产储存和卸载)在产油和卸载过程中需要在洋流、风或波浪等外力作用下保持指定位置时,首先要考虑精确的位置测量。GPS(全球定位系统)主要用于测量船舶的位置。但是利用GPS进行的位置测量存在噪声。该噪声对动态定位系统影响较大,因此有必要对其进行去除。本文将基于卡尔曼滤波的逆线性二次最优伺服理论应用于DPS控制系统的设计。一般来说,卡尔曼滤波是用来估计船舶的低频运动,以便应用控制使位置误差最小化。但在本文中,由于我们已经将FPSO的运动视为低频运动,所以使用卡尔曼滤波来去除测量噪声。数值仿真结果表明了卡尔曼滤波与ILQ最优伺服系统相结合的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimation Method for Dragged Anchor Accident Frequency on Subsea Pipelines in Busy Port Areas Study on the Water-exchange Performance of Buoyancy-control Type Ballast-free Ship by Model Tests at Sea Experimental and Numerical Study of an Anti-Sloshing Floating Device for Membrane-Type LNG Tanks Variational Principles Related to Motions of a Floating Elastic Plate in Waves Kinetic Analysis of Ships using Satellite Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1