Intelligent Driver Emotion Monitoring Based on Lightweight Multilayer Random Forests

Mira Jeong, Minji Park, ByoungChul Ko
{"title":"Intelligent Driver Emotion Monitoring Based on Lightweight Multilayer Random Forests","authors":"Mira Jeong, Minji Park, ByoungChul Ko","doi":"10.1109/INDIN41052.2019.8972136","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a lightweight multi-layer random forest (LMRF) model. The LMRF model is a non-neural network-style deep model composed of arbitrary forests rather than layers. DNN is a powerful algorithm for facial recognition (FER), but there are too many parameters, careful parameter tuning, large amounts of training data, black box models, and pretrained architecture required for a current DNN. To overcome the burden of real-time processing DNN, we use the proposed LMRF with two tree structures per layer and a small number of trees for high-speed FER. We conducted experiments using an actual driving database captured using a near-infrared (NIR) camera to monitor the driver's emotions. The proposed LMRF provides similar FER accuracy to DNN with a small number of hyperparameters, and the faster processing time using the CPU.","PeriodicalId":260220,"journal":{"name":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN41052.2019.8972136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we propose a lightweight multi-layer random forest (LMRF) model. The LMRF model is a non-neural network-style deep model composed of arbitrary forests rather than layers. DNN is a powerful algorithm for facial recognition (FER), but there are too many parameters, careful parameter tuning, large amounts of training data, black box models, and pretrained architecture required for a current DNN. To overcome the burden of real-time processing DNN, we use the proposed LMRF with two tree structures per layer and a small number of trees for high-speed FER. We conducted experiments using an actual driving database captured using a near-infrared (NIR) camera to monitor the driver's emotions. The proposed LMRF provides similar FER accuracy to DNN with a small number of hyperparameters, and the faster processing time using the CPU.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于轻量级多层随机森林的智能驾驶员情绪监测
本文提出了一种轻量级的多层随机森林(LMRF)模型。LMRF模型是由任意森林而不是层组成的非神经网络式深度模型。深度神经网络是一种功能强大的面部识别算法,但目前的深度神经网络需要太多的参数、仔细的参数调优、大量的训练数据、黑盒模型和预训练架构。为了克服实时处理深度神经网络的负担,我们使用了每层两棵树结构的LMRF和少量树用于高速FER。我们使用近红外(NIR)摄像机拍摄的实际驾驶数据库进行实验,以监测驾驶员的情绪。所提出的LMRF在使用少量超参数的情况下提供了与DNN相似的FER精度,并且使用CPU的处理时间更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital Twin in Industry 4.0: Technologies, Applications and Challenges Using Multi-Agent Systems for Demand Response Aggregators: Analysis and Requirements for the Development Developing a Secure, Smart Microgrid Energy Market using Distributed Ledger Technologies An Intelligent Assistance System for Controlling Wind-Assisted Ship Propulsion Systems OPC UA Information Model and a Wrapper for IEC 61499 Runtimes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1