An Individual-based Probabilistic Model for Fish Stock Simulation

AMCA-POP Pub Date : 2010-08-18 DOI:10.4204/EPTCS.33.3
F. Buti, F. Corradini, E. Merelli, E. Paschini, P. Penna, L. Tesei
{"title":"An Individual-based Probabilistic Model for Fish Stock Simulation","authors":"F. Buti, F. Corradini, E. Merelli, E. Paschini, P. Penna, L. Tesei","doi":"10.4204/EPTCS.33.3","DOIUrl":null,"url":null,"abstract":"We define an individual-based probabilistic model of a sole (Solea solea) behaviour. The individual model is given in terms of an Extended Probabilistic Discrete Timed Automaton (EPDTA), a new formalism that is introduced in the paper and that is shown to be interpretable as a Markov decision process. A given EPDTA model can be probabilistically model-checked by giving a suitable translation into syntax accepted by existing model-checkers. In order to simulate the dynamics of a given population of soles in different environmental scenarios, an agent-based simulation environment is defined in which each agent implements the behaviour of the given EPDTA model. By varying the probabilities and the characteristic functions embedded in the EPDTA model it is possible to represent different scenarios and to tune the model itself by comparing the results of the simulations with real data about the sole stock in the North Adriatic sea, available from the recent project SoleMon. The simulator is presented and made available for its adaptation to other species.","PeriodicalId":118799,"journal":{"name":"AMCA-POP","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMCA-POP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.33.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We define an individual-based probabilistic model of a sole (Solea solea) behaviour. The individual model is given in terms of an Extended Probabilistic Discrete Timed Automaton (EPDTA), a new formalism that is introduced in the paper and that is shown to be interpretable as a Markov decision process. A given EPDTA model can be probabilistically model-checked by giving a suitable translation into syntax accepted by existing model-checkers. In order to simulate the dynamics of a given population of soles in different environmental scenarios, an agent-based simulation environment is defined in which each agent implements the behaviour of the given EPDTA model. By varying the probabilities and the characteristic functions embedded in the EPDTA model it is possible to represent different scenarios and to tune the model itself by comparing the results of the simulations with real data about the sole stock in the North Adriatic sea, available from the recent project SoleMon. The simulator is presented and made available for its adaptation to other species.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于个体的鱼群模拟概率模型
我们定义了一个基于个体的单一(Solea Solea)行为的概率模型。个体模型是用扩展概率离散时间自动机(EPDTA)给出的,EPDTA是本文引入的一种新的形式,并被证明可以解释为马尔可夫决策过程。通过将给定的EPDTA模型转换为现有模型检查器可接受的语法,可以对其进行概率模型检查。为了模拟不同环境场景中给定鞋底种群的动态,定义了一个基于代理的仿真环境,其中每个代理实现给定EPDTA模型的行为。通过改变EPDTA模型中嵌入的概率和特征函数,可以表示不同的情景,并通过将模拟结果与最近的SoleMon项目提供的有关北亚得里亚海唯一种群的实际数据进行比较来调整模型本身。提出了该模拟器,并将其用于适应其他物种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Analysis on the Influence of Network Topologies on Local and Global Dynamics of Metapopulation Systems Modelling of Multi-Agent Systems: Experiences with Membrane Computing and Future Challenges Celer: an Efficient Program for Genotype Elimination An Individual-based Probabilistic Model for Fish Stock Simulation Modelling the Dynamics of an Aedes albopictus Population
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1