Segmentation of three-dimensional objects from background in digital holograms

C. McElhinney, J. McDonald, A. Castro, Y. Frauel, B. Javidi, T. Naughton
{"title":"Segmentation of three-dimensional objects from background in digital holograms","authors":"C. McElhinney, J. McDonald, A. Castro, Y. Frauel, B. Javidi, T. Naughton","doi":"10.1109/IMVIP.2007.35","DOIUrl":null,"url":null,"abstract":"We present a technique for performing segmentation of three-dimensional, objects encoded using in-line digital holography from the scenes background. We create a volume of reconstructions through numerically reconstructing a digital hologram at a range of depths. For each reconstruction a variance map is created through calculating variance about a neighbourhood for each of the reconstructions pixels. We can then classify a pixel as object or background by thresholding the maximum variance of every pixel over all depths. We present segmentation results for objects of low and high contrast.","PeriodicalId":249544,"journal":{"name":"International Machine Vision and Image Processing Conference (IMVIP 2007)","volume":"2017 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Machine Vision and Image Processing Conference (IMVIP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMVIP.2007.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a technique for performing segmentation of three-dimensional, objects encoded using in-line digital holography from the scenes background. We create a volume of reconstructions through numerically reconstructing a digital hologram at a range of depths. For each reconstruction a variance map is created through calculating variance about a neighbourhood for each of the reconstructions pixels. We can then classify a pixel as object or background by thresholding the maximum variance of every pixel over all depths. We present segmentation results for objects of low and high contrast.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字全息图中三维物体与背景的分割
我们提出了一种技术,用于执行分割三维,对象编码使用在线数字全息从场景背景。我们通过在一定深度范围内对数字全息图进行数值重建,创建了大量的重建。对于每次重建,通过计算每个重建像素的邻域方差来创建方差图。然后,我们可以通过对所有深度上每个像素的最大方差设定阈值,将像素分类为对象或背景。我们给出了低对比度和高对比度目标的分割结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy Logic Based Segmentation of Microcalcification in Breast Using Digital Mammograms Considering Multiresolution Near-Circular Corner and Edge Detection Operators Recognition of Unstained Live Drosophila Cells in Microscope Images Video Object Motion Segmentation for Intelligent Visual Surveillance Speckle reduction using the discrete Fourier filtering technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1