Mining Pre-Exposure Prophylaxis Trends in Social Media

P. Breen, Jane M Kelly, T. Heckman, Shannon P. Quinn
{"title":"Mining Pre-Exposure Prophylaxis Trends in Social Media","authors":"P. Breen, Jane M Kelly, T. Heckman, Shannon P. Quinn","doi":"10.1109/DSAA.2016.29","DOIUrl":null,"url":null,"abstract":"Pre-Exposure Prophylaxis (PrEP) is a ground-breaking biomedical approach to curbing the transmission of Human Immunodeficiency Virus (HIV). Truvada, the most common form of PrEP, is a combination of tenofovir and emtricitabine and is a once-daily oral mediation taken by HIV-seronegative persons at elevated risk for HIV infection. When taken reliably every day, PrEP can reduce one's risk for HIV infection by as much as 99%. While highly efficacious, PrEP is expensive, somewhat stigmatized, and many health care providers remain uninformed about its benefits. Data mining of social media can monitor the spread of HIV in the United States, but no study has investigated PrEP use and sentiment via social media. This paper describes a data mining and machine learning strategy using natural language processing (NLP) that monitors Twitter social media data to identify PrEP discussion trends. Results showed that we can identify PrEP and HIV discussion dynamics over time, and assign PrEP-related tweets positive or negative sentiment. Results can enable public health professionals to monitor PrEP discussion trends and identify strategies to improve HIV prevention via PrEP.","PeriodicalId":193885,"journal":{"name":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2016.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Pre-Exposure Prophylaxis (PrEP) is a ground-breaking biomedical approach to curbing the transmission of Human Immunodeficiency Virus (HIV). Truvada, the most common form of PrEP, is a combination of tenofovir and emtricitabine and is a once-daily oral mediation taken by HIV-seronegative persons at elevated risk for HIV infection. When taken reliably every day, PrEP can reduce one's risk for HIV infection by as much as 99%. While highly efficacious, PrEP is expensive, somewhat stigmatized, and many health care providers remain uninformed about its benefits. Data mining of social media can monitor the spread of HIV in the United States, but no study has investigated PrEP use and sentiment via social media. This paper describes a data mining and machine learning strategy using natural language processing (NLP) that monitors Twitter social media data to identify PrEP discussion trends. Results showed that we can identify PrEP and HIV discussion dynamics over time, and assign PrEP-related tweets positive or negative sentiment. Results can enable public health professionals to monitor PrEP discussion trends and identify strategies to improve HIV prevention via PrEP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
挖掘社交媒体的暴露前预防趋势
暴露前预防(PrEP)是一种突破性的生物医学方法,用于遏制人类免疫缺陷病毒(HIV)的传播。特鲁瓦达是PrEP最常见的形式,是替诺福韦和恩曲他滨的组合,是艾滋病毒血清阴性的艾滋病毒感染风险较高的人每天服用一次的口服药物。如果每天可靠地服用PrEP,可以将感染艾滋病毒的风险降低99%。虽然PrEP非常有效,但价格昂贵,有些污名化,许多卫生保健提供者仍然不了解其益处。社交媒体的数据挖掘可以监测艾滋病毒在美国的传播,但没有研究调查PrEP在社交媒体上的使用和情绪。本文描述了一种使用自然语言处理(NLP)的数据挖掘和机器学习策略,该策略监控Twitter社交媒体数据以识别PrEP讨论趋势。结果表明,我们可以识别PrEP和HIV讨论动态随时间的变化,并分配PrEP相关推文的积极或消极情绪。结果可使公共卫生专业人员监测预防措施的讨论趋势,并确定通过预防措施改善艾滋病毒预防的战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Multi-Granularity Pattern-Based Sequence Classification Framework for Educational Data Task Composition in Crowdsourcing Maritime Pattern Extraction from AIS Data Using a Genetic Algorithm What Did I Do Wrong in My MOBA Game? Mining Patterns Discriminating Deviant Behaviours Nonparametric Adjoint-Based Inference for Stochastic Differential Equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1