Markerless human body motion capture using multiple cameras

Li Jia, M. Zhenjiang, Wang Chengkai
{"title":"Markerless human body motion capture using multiple cameras","authors":"Li Jia, M. Zhenjiang, Wang Chengkai","doi":"10.1109/ICOSP.2008.4697410","DOIUrl":null,"url":null,"abstract":"In this paper, we present an approach for markerless model-based full human-body motion capture using multi-view images as input. We extract volume data (voxels) representation from the silhouettes extracted from multiple-view video images by the method of shape from Silhouettes (SFS), and match our predefined human body model to the volume data. We construct an energy field in the volume of interest based on the volume data and human body model with pose parameters, and transform the matching to an energy minimizing problem. By dynamic graph cut, we get the minimum energy of certain pose parameters, and at last we optimize the pose parameters using Powell algorithm with a novel approach that uses the linear prediction guiding the optimization process and get the pose recovered. Through the test results on several video sequences of human body movements in an unaugmented office environment, we demonstrate the effectiveness and robustness of our approach.","PeriodicalId":445699,"journal":{"name":"2008 9th International Conference on Signal Processing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 9th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2008.4697410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present an approach for markerless model-based full human-body motion capture using multi-view images as input. We extract volume data (voxels) representation from the silhouettes extracted from multiple-view video images by the method of shape from Silhouettes (SFS), and match our predefined human body model to the volume data. We construct an energy field in the volume of interest based on the volume data and human body model with pose parameters, and transform the matching to an energy minimizing problem. By dynamic graph cut, we get the minimum energy of certain pose parameters, and at last we optimize the pose parameters using Powell algorithm with a novel approach that uses the linear prediction guiding the optimization process and get the pose recovered. Through the test results on several video sequences of human body movements in an unaugmented office environment, we demonstrate the effectiveness and robustness of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无标记人体动作捕捉使用多个摄像头
在本文中,我们提出了一种使用多视图图像作为输入的基于无标记模型的全身运动捕捉方法。我们利用SFS (shape from silhouette)方法从多视图视频图像中提取的轮廓中提取体数据(体素)表示,并将我们预定义的人体模型与体数据进行匹配。基于体数据和具有位姿参数的人体模型,在感兴趣的体上构造能量场,并将匹配问题转化为能量最小化问题。通过动态图切得到某一姿态参数的最小能量,最后利用Powell算法对姿态参数进行优化,提出了一种利用线性预测指导优化过程并得到姿态恢复的新方法。通过在非增强办公环境中对几个人体运动视频序列的测试结果,我们证明了我们的方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel pulse shaping method for Ultra-Wideband communications Matching pursuits with undercomplete dictionary A novel decision-directed channel estimator for OFDM systems Task analysis methods for data selection in task adaptation on mandarin isolated word recognition Combining LBP and Adaboost for facial expression recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1