Predicting AIS reception using tropospheric propagation forecast and machine learning

Z. Vanche, A. Renaud, A. Napoli
{"title":"Predicting AIS reception using tropospheric propagation forecast and machine learning","authors":"Z. Vanche, A. Renaud, A. Napoli","doi":"10.23919/USNC-URSI52669.2022.9887465","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to present a methodology for modelling and predicting the coverage of an Automatic Identification System (AIS) station based on tropospheric index forecast maps and modelling methods from machine learning. The aim of this work is to cartographically represent the areas in which the AIS signals emitted by ships will be received by a coastal station. This work contributes to the improvement of maritime situational awareness and to the detection of anomalies at sea [1], and in particular to the identification of AIS message falsifications [2] (ubiquity of a vessel by identity theft, falsification of GPS positions and deactivation of AIS).","PeriodicalId":104242,"journal":{"name":"2022 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC-URSI52669.2022.9887465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this paper is to present a methodology for modelling and predicting the coverage of an Automatic Identification System (AIS) station based on tropospheric index forecast maps and modelling methods from machine learning. The aim of this work is to cartographically represent the areas in which the AIS signals emitted by ships will be received by a coastal station. This work contributes to the improvement of maritime situational awareness and to the detection of anomalies at sea [1], and in particular to the identification of AIS message falsifications [2] (ubiquity of a vessel by identity theft, falsification of GPS positions and deactivation of AIS).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用对流层传播预测和机器学习预测AIS接收
本文的目的是提出一种基于对流层指数预测图和机器学习建模方法的自动识别系统(AIS)站覆盖建模和预测方法。这项工作的目的是在地图上表示船舶发出的AIS信号将被沿海站接收的区域。这项工作有助于提高海上态势感知能力,探测海上异常[1],特别是识别AIS信息伪造[2](通过身份盗窃、伪造GPS位置和禁用AIS来无处不在的船只)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Array Arrangement Design of Multistatic Sparse Linear Array SAR for 3-D Imaging Low-cost System for Electromagnetic SAR Evaluation in a Human Phantom On the Use of a Microstrip Meander Line to Reduce Mutual Coupling between a Patch Antenna and a Transmission Line on Printed Circuit Boards Radio Frequency Interrogation of Sensors in Metal Pipes for Structural Health Monitoring Surface Wave Attenuation in Salisbury Screen in TM0 mode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1