Spectrogram-Based Automatic Modulation Recognition Using Convolutional Neural Network

Sinjin Jeong, Uhyeon Lee, S. Kim
{"title":"Spectrogram-Based Automatic Modulation Recognition Using Convolutional Neural Network","authors":"Sinjin Jeong, Uhyeon Lee, S. Kim","doi":"10.1109/ICUFN.2018.8436654","DOIUrl":null,"url":null,"abstract":"We study a system for classifying modulation types with spectrograms obtained through short-time Fourier transform. AWGN-based carrier modulated signals and their spectrograms are generated. In order to extract features from spectrogram automatically, we learned our convolutional neural network model with the generated data. Even at low SNRs, the performance is fairly good, but additional modulation type applications and comparisons with others in various environments are necessary.","PeriodicalId":224367,"journal":{"name":"2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN.2018.8436654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We study a system for classifying modulation types with spectrograms obtained through short-time Fourier transform. AWGN-based carrier modulated signals and their spectrograms are generated. In order to extract features from spectrogram automatically, we learned our convolutional neural network model with the generated data. Even at low SNRs, the performance is fairly good, but additional modulation type applications and comparisons with others in various environments are necessary.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于频谱图的卷积神经网络自动调制识别
研究了一种利用短时傅里叶变换得到的频谱图对调制类型进行分类的系统。生成基于awgn的载波调制信号及其频谱图。为了从谱图中自动提取特征,我们利用生成的数据学习卷积神经网络模型。即使在低信噪比下,性能也相当好,但需要额外的调制类型应用和在各种环境下与其他调制类型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Low Overhead Feedback Scheme of Channel Covariance Matrix for Massive MIMO Systems Development of a Hybrid Decision-Making Method Based on a Simulation-Genetic Algorithm in a Web-Oriented Metallurgical Enterprise Information System Indoor Semantic Segmentation for Robot Navigating on Mobile Small Drone Development for Public Service Relating to Korean PPI Impact of Both Nonzero Boresight and Jitter Pointing Error on Outage Capacity of FSO Communication Systems Over Strong Turbulence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1