{"title":"ERRCA: A buffer-efficient reconfigurable optical Network-on-Chip with permanent-error recognition","authors":"Wolfgang Büter, Dominic Oehlert, A. Ortiz","doi":"10.1109/ReCoSoC.2016.7533909","DOIUrl":null,"url":null,"abstract":"Optical on-chip communication technology provides an unprecedented bandwidth. It allows to connect the hundreds or even thousands of processing elements expected in many core systems using optical Network-on-Chip. However, the required buffers to interface the electrical and optical layers are very large, since optical data-flow cannot be stored. Moreover, on-chip optical technologies have high defect rates which limits its usability severely. In order to address these challenges, this work presents a buffer-efficient reconfigurable optical Network-on-Chip with permanent-error recognition. The buffer-efficiency is achieved by a global credit-based arbitration with optical tokens. Further on, the architecture autonomously detects permanent errors in the optical components and configures the communication paths to avoid them. The work provides a thorough analysis at the gate-level of the area overhead incurred by the electrical sub-modules of the proposed system. It shows the practicability of the approach, experimental validated on a FPGA prototype. Compared with previously reported optical networks, it achieves an area reduction of up to 80% with almost identical performance.","PeriodicalId":248789,"journal":{"name":"2016 11th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReCoSoC.2016.7533909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Optical on-chip communication technology provides an unprecedented bandwidth. It allows to connect the hundreds or even thousands of processing elements expected in many core systems using optical Network-on-Chip. However, the required buffers to interface the electrical and optical layers are very large, since optical data-flow cannot be stored. Moreover, on-chip optical technologies have high defect rates which limits its usability severely. In order to address these challenges, this work presents a buffer-efficient reconfigurable optical Network-on-Chip with permanent-error recognition. The buffer-efficiency is achieved by a global credit-based arbitration with optical tokens. Further on, the architecture autonomously detects permanent errors in the optical components and configures the communication paths to avoid them. The work provides a thorough analysis at the gate-level of the area overhead incurred by the electrical sub-modules of the proposed system. It shows the practicability of the approach, experimental validated on a FPGA prototype. Compared with previously reported optical networks, it achieves an area reduction of up to 80% with almost identical performance.