SemKeyphrase: An Unsupervised Approach to Keyphrase Extraction from MOOC Video Lectures

A. Albahr, D. Che, M. Albahar
{"title":"SemKeyphrase: An Unsupervised Approach to Keyphrase Extraction from MOOC Video Lectures","authors":"A. Albahr, D. Che, M. Albahar","doi":"10.1145/3350546.3352535","DOIUrl":null,"url":null,"abstract":"The Massive Open Online Courses (MOOCs) have emerged as a great resource for learners. Numerous challenges remain to be addressed in order to make MOOCs more useful and convenient for learners. One such challenge is how to automatically extract a set of keyphrases from MOOC video lectures that can help students quickly identify a suitable knowledge without spending too much time and expedite their learning process. In this paper, we propose SemKeyphrase, an unsupervised cluster-based approach for keyphrase extraction from MOOC video lectures. SemKeyphraseincorporates a new ranking algorithm, called PhaseRank, that involves two phases on ranking candidate keyphrases. Experiment results on a real-world dataset of MOOC video lectures show that our proposed approach outperforms the state-of-the-art methods by 16% or more in terms of F1 score.","PeriodicalId":171168,"journal":{"name":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3350546.3352535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The Massive Open Online Courses (MOOCs) have emerged as a great resource for learners. Numerous challenges remain to be addressed in order to make MOOCs more useful and convenient for learners. One such challenge is how to automatically extract a set of keyphrases from MOOC video lectures that can help students quickly identify a suitable knowledge without spending too much time and expedite their learning process. In this paper, we propose SemKeyphrase, an unsupervised cluster-based approach for keyphrase extraction from MOOC video lectures. SemKeyphraseincorporates a new ranking algorithm, called PhaseRank, that involves two phases on ranking candidate keyphrases. Experiment results on a real-world dataset of MOOC video lectures show that our proposed approach outperforms the state-of-the-art methods by 16% or more in terms of F1 score.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SemKeyphrase:一种从MOOC视频讲座中提取关键词的无监督方法
大规模在线开放课程(MOOCs)已经成为学习者的重要资源。为了使mooc对学习者更有用、更方便,还有许多挑战需要解决。其中一个挑战是如何从MOOC视频讲座中自动提取一组关键短语,帮助学生在不花费太多时间的情况下快速识别合适的知识,加快学习过程。在本文中,我们提出了SemKeyphrase,这是一种基于无监督聚类的方法,用于从MOOC视频讲座中提取关键词。semkeyphrase结合了一种新的排名算法,称为PhaseRank,它涉及两个阶段对候选关键短语进行排名。在MOOC视频讲座的真实数据集上的实验结果表明,就F1分数而言,我们提出的方法比最先进的方法高出16%或更多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Issue Recommendation for Open Source Communities Exploring Differences in the Impact of Users’ Traces on Arabic and English Facebook Search Design and implementation of an open source Greek POS Tagger and Entity Recognizer using spaCy Extracting Ego-Centric Social Networks from Linked Open Data Towards an End-User Layer for Data Integrity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1