On Experimental Confirmation of Quantum Physics

Y. Ra, Yoon-Ho Kim
{"title":"On Experimental Confirmation of Quantum Physics","authors":"Y. Ra, Yoon-Ho Kim","doi":"10.3938/phit.31.047","DOIUrl":null,"url":null,"abstract":"In 1935, Einstein, Podolsky, and Rosen (EPR) argued that (then new) quantum mechanics was incomplete. At the heart of EPR’s paradox was the strange non-local nature of an entangled state which allowed EPR to simultaneously assign local values for position and momentum of a particle. In 1964, John Bell proposed an inequality (Bell’s inequality) that must be satisfied by any local realistic theory. The experimental confirmation of quantum physics, i.e., the experimental test of Bell’s inequality, required a pair of particles in an entangled state. The experiments first performed in the early 1970s, followed by a series of experiments until now, have confirmed the violation of Bell’s inequality, strongly implying that local realistic descriptions of nature are not consistent with experimental observations. The early simplistic view of entanglement has now been significantly expanded to include mixed states and multiple particles. Moreover, theoretical and experimental studies on the nature of entanglement have led to quantum information science where entanglement is an essential resource. In this article, we briefly review the early experiments on Bell’s inequality and experimental attempts to close “loopholes” as well as some key experiments on quantum information.","PeriodicalId":365688,"journal":{"name":"Physics and High Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and High Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3938/phit.31.047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 1935, Einstein, Podolsky, and Rosen (EPR) argued that (then new) quantum mechanics was incomplete. At the heart of EPR’s paradox was the strange non-local nature of an entangled state which allowed EPR to simultaneously assign local values for position and momentum of a particle. In 1964, John Bell proposed an inequality (Bell’s inequality) that must be satisfied by any local realistic theory. The experimental confirmation of quantum physics, i.e., the experimental test of Bell’s inequality, required a pair of particles in an entangled state. The experiments first performed in the early 1970s, followed by a series of experiments until now, have confirmed the violation of Bell’s inequality, strongly implying that local realistic descriptions of nature are not consistent with experimental observations. The early simplistic view of entanglement has now been significantly expanded to include mixed states and multiple particles. Moreover, theoretical and experimental studies on the nature of entanglement have led to quantum information science where entanglement is an essential resource. In this article, we briefly review the early experiments on Bell’s inequality and experimental attempts to close “loopholes” as well as some key experiments on quantum information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论量子物理的实验证实
1935年,爱因斯坦、波多尔斯基和罗森(EPR)认为(当时新的)量子力学是不完整的。EPR悖论的核心是纠缠态奇怪的非局域性质,这使得EPR可以同时为粒子的位置和动量赋局域值。1964年,约翰·贝尔提出了一个不等式(贝尔不等式),它必须为任何局部现实理论所满足。量子物理的实验证实,即贝尔不等式的实验检验,需要一对处于纠缠态的粒子。在20世纪70年代早期进行的第一次实验,以及随后直到现在的一系列实验,都证实了贝尔不等式的违反,这强烈暗示了对自然的局部现实描述与实验观察不一致。早期关于纠缠的简单观点现在已经被显著地扩展到包括混合状态和多个粒子。此外,对纠缠性质的理论和实验研究导致了量子信息科学,其中纠缠是必不可少的资源。在本文中,我们简要回顾了早期关于贝尔不等式的实验和填补“漏洞”的实验尝试,以及一些关于量子信息的关键实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chiral Nanophotonics and Control of Light-matter Interaction Micro-optical Maximization of Photon-photon Interaction Recent Progress in Nanophotonic Light Sources Steering Thermal Radiation Quantum Computing Research at the National Metrology Institute
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1