DOA Estimation with a Rank-deficient Covariance matrix: A Regularized Least-squares approach

Hussain Ali, Tarig Ballal, T. Al-Naffouri, M. Sharawi
{"title":"DOA Estimation with a Rank-deficient Covariance matrix: A Regularized Least-squares approach","authors":"Hussain Ali, Tarig Ballal, T. Al-Naffouri, M. Sharawi","doi":"10.23919/USNC/URSI49741.2020.9321628","DOIUrl":null,"url":null,"abstract":"DOA estimation in the presence of coherent sources using a small number of snapshots faces the challenge of rank deficiency of the received signal covariance matrix. When the covariance matrix is rank deficient, only the pseudo inverse of the covariance matrix can be computed, which can give undesirable results. Traditionally, regularized least-squares (RLS) algorithms are used to tackle estimation problems in systems with ill-conditioned or rank deficient matrices. In this work, we combine the Capon beamformer with the RLS framework to develop a DOA estimation method for scenarios with rank deficient covariance matrices. Simulation results demonstrate the effectiveness of the proposed approach.","PeriodicalId":443426,"journal":{"name":"2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC/URSI49741.2020.9321628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

DOA estimation in the presence of coherent sources using a small number of snapshots faces the challenge of rank deficiency of the received signal covariance matrix. When the covariance matrix is rank deficient, only the pseudo inverse of the covariance matrix can be computed, which can give undesirable results. Traditionally, regularized least-squares (RLS) algorithms are used to tackle estimation problems in systems with ill-conditioned or rank deficient matrices. In this work, we combine the Capon beamformer with the RLS framework to develop a DOA estimation method for scenarios with rank deficient covariance matrices. Simulation results demonstrate the effectiveness of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
秩缺失协方差矩阵的DOA估计:一种正则化最小二乘方法
利用少量快照进行相干源下的DOA估计,面临着接收信号协方差矩阵秩不足的挑战。当协方差矩阵是秩亏时,只能计算协方差矩阵的伪逆,这可能会得到不理想的结果。传统上,正则化最小二乘(RLS)算法用于处理病态或秩亏矩阵系统的估计问题。在这项工作中,我们将Capon波束形成器与RLS框架相结合,开发了一种秩不足协方差矩阵场景下的DOA估计方法。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Length Limits for Perfectly Matched Transmission Line Impedance Transformation Borehole Water Holdup Detection Using Conical Spiral Transmission Line Analysis of GPS Gradient Parameters for Rainfall Prediction Adaptive Sensing Matrix Design in Compressive Sensing Based Direction of Arrival Estimation with Hardware Constraints Importance of Hydrostatic Delay Models in Deriving PWV from GPS Signal Delays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1