Failure mechanisms of boards in a thin wafer level chip scale package

Pavan Rajmane, Hassaan Ahmad Khan, A. Doiphode, Unique Rahangdale, D. Agonafer, A. Lohia, S. Kummerl, L. Nguyen
{"title":"Failure mechanisms of boards in a thin wafer level chip scale package","authors":"Pavan Rajmane, Hassaan Ahmad Khan, A. Doiphode, Unique Rahangdale, D. Agonafer, A. Lohia, S. Kummerl, L. Nguyen","doi":"10.1109/ITHERM.2017.7992611","DOIUrl":null,"url":null,"abstract":"Various studies have been conducted to study the effect of varying board thickness on thermo-mechanical reliability of BGA packages. Wafer level chip scale packages (WLCSP) have also been studied in this regard to determine the effect of PCB build-up thickness on the solder joint reliability [1]. The studies clearly demonstrate that the thinner Printed Circuit Boards (PCBs) result in longer thermo-mechanical fatigue life of solder joints for BGA. With the literature and past trends supporting the idea of thinner boards, manufacturer opted to move forward by decreasing the thickness of their PCBs to improve the reliability of their packages. The thickness was reduced from 1mm to 0.7mm by decreasing the thicknesses of individual layers and keeping the total number of layers constant. When subjected to thermal cycling, it was observed that 0.7mm board was failing earlier than the 1mm board. Since this behavior of a WLCSP contrasts with the past trends, it required extensive study to determine and understand the pre-mature physics of failure/causality of failure in 0.7mm board. In this paper, an effort is made to understand the mechanism which is causing an early failure in the thinner board. The effect of number & thicknesses of core layers, prepregs and Cu layers in the board has been studied through material characterization of both 1mm and 0.7mm boards. Further, a design optimization account has also been presented to improve the thermo-mechanical reliability of this package.","PeriodicalId":387542,"journal":{"name":"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2017.7992611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Various studies have been conducted to study the effect of varying board thickness on thermo-mechanical reliability of BGA packages. Wafer level chip scale packages (WLCSP) have also been studied in this regard to determine the effect of PCB build-up thickness on the solder joint reliability [1]. The studies clearly demonstrate that the thinner Printed Circuit Boards (PCBs) result in longer thermo-mechanical fatigue life of solder joints for BGA. With the literature and past trends supporting the idea of thinner boards, manufacturer opted to move forward by decreasing the thickness of their PCBs to improve the reliability of their packages. The thickness was reduced from 1mm to 0.7mm by decreasing the thicknesses of individual layers and keeping the total number of layers constant. When subjected to thermal cycling, it was observed that 0.7mm board was failing earlier than the 1mm board. Since this behavior of a WLCSP contrasts with the past trends, it required extensive study to determine and understand the pre-mature physics of failure/causality of failure in 0.7mm board. In this paper, an effort is made to understand the mechanism which is causing an early failure in the thinner board. The effect of number & thicknesses of core layers, prepregs and Cu layers in the board has been studied through material characterization of both 1mm and 0.7mm boards. Further, a design optimization account has also been presented to improve the thermo-mechanical reliability of this package.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
薄晶圆级芯片规模封装中电路板的失效机制
为了研究不同板厚对BGA封装热机械可靠性的影响,已经进行了各种各样的研究。晶圆级芯片规模封装(WLCSP)也在这方面进行了研究,以确定PCB堆积厚度对焊点可靠性的影响[1]。研究结果表明,电路板越薄,BGA焊点的热机械疲劳寿命越长。随着文献和过去的趋势支持薄板的想法,制造商选择通过减少pcb的厚度来提高其封装的可靠性。通过减小各层厚度,保持层数不变,使厚度从1mm减小到0.7mm。当进行热循环时,观察到0.7mm板比1mm板更早失效。由于WLCSP的这种行为与过去的趋势形成对比,因此需要进行广泛的研究,以确定和理解0.7mm板失效的早熟物理特性/失效因果关系。在本文中,努力了解的机制是导致早期失效的薄板。通过对1mm和0.7mm板的材料表征,研究了芯层、预浸料和Cu层数量和厚度的影响。此外,还提出了一种设计优化方案,以提高该封装的热机械可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Degradation characterization of thermal interface greases Gravity effects in microgap flow boiling Effect of electrode properties on performance of miniaturized vanadium redox flow battery Two-phase liquid cooling system for electronics, part 1: Pump-driven loop Development of algorithms for real-time estimation of smartphone surface temperature using embedded processor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1