Scalogram Based Heart Disease Classification using Hybrid CNN-Naive Bayes Classifier

Ajjey S. B., S. S., Sowmeeya S. R., Ajin R. Nair, M. Raju
{"title":"Scalogram Based Heart Disease Classification using Hybrid CNN-Naive Bayes Classifier","authors":"Ajjey S. B., S. S., Sowmeeya S. R., Ajin R. Nair, M. Raju","doi":"10.1109/wispnet54241.2022.9767153","DOIUrl":null,"url":null,"abstract":"The proper monitoring of ECG will help to identify patients with cardiac problems. In the last two decades, many lives have been saved due to the automated prediction of heart diseases with the help of ECG signals. This article proposes a hybrid CNN-Naive Bayes classifier for classifying Normal Sinus Rhythm, Abnormal Arrhythmia, and Congestive Heart Failure from the MIT-BIH arrhythmia database. The one-dimensional ECG signals are converted to two-dimensional scalogram images using continuous wavelet transform. The scalogram images eliminate noise filtering and conventional feature extraction steps that may lead to loss of beats. The proposed architecture uses GoogLeNet to extract independent and discriminating features, which aids the Naive Bayes classifier to attain a high accuracy of 98.76%.","PeriodicalId":432794,"journal":{"name":"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wispnet54241.2022.9767153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The proper monitoring of ECG will help to identify patients with cardiac problems. In the last two decades, many lives have been saved due to the automated prediction of heart diseases with the help of ECG signals. This article proposes a hybrid CNN-Naive Bayes classifier for classifying Normal Sinus Rhythm, Abnormal Arrhythmia, and Congestive Heart Failure from the MIT-BIH arrhythmia database. The one-dimensional ECG signals are converted to two-dimensional scalogram images using continuous wavelet transform. The scalogram images eliminate noise filtering and conventional feature extraction steps that may lead to loss of beats. The proposed architecture uses GoogLeNet to extract independent and discriminating features, which aids the Naive Bayes classifier to attain a high accuracy of 98.76%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于尺度图的cnn -朴素贝叶斯混合分类器的心脏病分类
适当的心电图监测将有助于识别患者的心脏问题。在过去的二十年中,由于借助ECG信号自动预测心脏病,许多生命得以挽救。本文提出一种cnn -朴素贝叶斯混合分类器,用于从MIT-BIH心律失常数据库中分类正常窦性心律、异常心律失常和充血性心力衰竭。利用连续小波变换将一维心电信号转换为二维尺度图图像。尺度图图像消除了可能导致节拍丢失的噪声滤波和常规特征提取步骤。该体系结构利用GoogLeNet提取独立特征和判别特征,使朴素贝叶斯分类器的准确率达到98.76%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modified Simultaneous Weighted – OMP Based Channel Estimation and Hybrid Precoding for Massive MIMO Systems Zero Padded Dual Index Trimode OFDM-IM Diabetes Mellitus Prediction Based on Enhanced K Strange Points Clustering and Classification Mobile Sink Data Gathering and Path Determination in Wireless Sensor Networks: A Review A Study on Visual Based Optical Sensor for Depth Sense Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1