Text Pre-Processing Methods on Cross Language Information Retrieval

Sakthi Vel S, P. R
{"title":"Text Pre-Processing Methods on Cross Language Information Retrieval","authors":"Sakthi Vel S, P. R","doi":"10.1109/CSI54720.2022.9923952","DOIUrl":null,"url":null,"abstract":"Cross Language Information Retrieval (CLIR), is the process of retrieving relevant documents, where in the language of the given query is different from the language of the retrieved documents. CLIR systems allow the users to search and access documents in the language different from the language of the search query. CLIR systems have been divided into Monolingual CLIR, Bi-lingual CLIR, and Multilingual CLIR based on different languages of query and documents. The first step of the Cross Language Information Retrieval system is the text pre-processing of given text documents in to useful representations. Pre-processing is the set of tasks that convert the given text documents into a suitable format for any higher-level text related applications. This technique can be used to reduce the computational process, noise data, and irrelevant information from the given text documents. This paper discusses in detail the different pre-processing techniques such as dataset creation, tokenization, noise removal, stop word removal, stemming, lemmatization and finally term weighting of two languages dataset (i.e., Tamil and Malayalam), which is manually collected from BBC online website. Finally, the study investigates feature extraction techniques of Term Frequency- Inverse Document Frequency (TF-IDF). These techniques will help to design and model CLIR systems with high performance.","PeriodicalId":221137,"journal":{"name":"2022 International Conference on Connected Systems & Intelligence (CSI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Connected Systems & Intelligence (CSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSI54720.2022.9923952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cross Language Information Retrieval (CLIR), is the process of retrieving relevant documents, where in the language of the given query is different from the language of the retrieved documents. CLIR systems allow the users to search and access documents in the language different from the language of the search query. CLIR systems have been divided into Monolingual CLIR, Bi-lingual CLIR, and Multilingual CLIR based on different languages of query and documents. The first step of the Cross Language Information Retrieval system is the text pre-processing of given text documents in to useful representations. Pre-processing is the set of tasks that convert the given text documents into a suitable format for any higher-level text related applications. This technique can be used to reduce the computational process, noise data, and irrelevant information from the given text documents. This paper discusses in detail the different pre-processing techniques such as dataset creation, tokenization, noise removal, stop word removal, stemming, lemmatization and finally term weighting of two languages dataset (i.e., Tamil and Malayalam), which is manually collected from BBC online website. Finally, the study investigates feature extraction techniques of Term Frequency- Inverse Document Frequency (TF-IDF). These techniques will help to design and model CLIR systems with high performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨语言信息检索中的文本预处理方法
跨语言信息检索(CLIR)是检索相关文档的过程,其中给定查询的语言与检索文档的语言不同。CLIR系统允许用户以不同于搜索查询语言的语言搜索和访问文档。基于查询语言和文档语言的不同,可将CLIR系统分为单语CLIR、双语CLIR和多语CLIR。跨语言信息检索系统的第一步是将给定的文本文档预处理成有用的表示形式。预处理是将给定的文本文档转换为适合任何高级文本相关应用程序的格式的一组任务。该技术可用于减少给定文本文档中的计算过程、噪声数据和不相关信息。本文详细讨论了从BBC在线网站手动采集的两种语言数据集(即泰米尔语和马拉雅拉姆语)的不同预处理技术,如数据集创建、标记化、去噪、去停词、词干提取、词法化和最后的术语加权。最后,研究了词频-逆文档频率(TF-IDF)特征提取技术。这些技术将有助于高性能CLIR系统的设计和建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time Object Detection in Microscopic Image of Indian Herbal Plants using YOLOv5 on Jetson Nano Estimation and Interception of a Spiralling Target on Reentry in the Presence of non-Gaussian Measurement Noise COVID-19 Relief Measures assimilating Open Source Intelligence Fake News Article classification using Random Forest, Passive Aggressive, and Gradient Boosting Improved Bi-Channel CNN For Covid-19 Diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1