A Hybrid Gomoku Deep Learning Artificial Intelligence

Peizhi Yan, Yi Feng
{"title":"A Hybrid Gomoku Deep Learning Artificial Intelligence","authors":"Peizhi Yan, Yi Feng","doi":"10.1145/3299819.3299820","DOIUrl":null,"url":null,"abstract":"Gomoku is an ancient board game. The traditional approach to solving the Gomoku is to apply tree search on a Gomoku game tree. Although the rules of Gomoku are straightforward, the game tree complexity is enormous. Unlike other board games such as chess and Shogun, the Gomoku board state is more intuitive. This feature is similar to another famous board game, the game of Go. The success of AlphaGo [5, 6] inspired us to apply a supervised learning method and deep neural network in solving the Gomoku game. We designed a deep convolutional neural network model to help the machine learn from the training data. In our experiment, we got 69% accuracy on the training data and 38% accuracy on the testing data. Finally, we combined the trained deep neural network model with a hard-coded convolution-based Gomoku evaluation function to form a hybrid Gomoku artificial intelligence (AI) which further improved performance.","PeriodicalId":119217,"journal":{"name":"Artificial Intelligence and Cloud Computing Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Cloud Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3299819.3299820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Gomoku is an ancient board game. The traditional approach to solving the Gomoku is to apply tree search on a Gomoku game tree. Although the rules of Gomoku are straightforward, the game tree complexity is enormous. Unlike other board games such as chess and Shogun, the Gomoku board state is more intuitive. This feature is similar to another famous board game, the game of Go. The success of AlphaGo [5, 6] inspired us to apply a supervised learning method and deep neural network in solving the Gomoku game. We designed a deep convolutional neural network model to help the machine learn from the training data. In our experiment, we got 69% accuracy on the training data and 38% accuracy on the testing data. Finally, we combined the trained deep neural network model with a hard-coded convolution-based Gomoku evaluation function to form a hybrid Gomoku artificial intelligence (AI) which further improved performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合Gomoku深度学习人工智能
围棋是一种古老的棋盘游戏。求解Gomoku的传统方法是对Gomoku博弈树进行树搜索。尽管《Gomoku》的规则很简单,但游戏树的复杂性却是巨大的。与象棋和幕府将军等其他棋盘游戏不同,Gomoku的棋盘状态更直观。这个功能类似于另一种著名的棋盘游戏——围棋。AlphaGo的成功[5,6]启发了我们将监督学习方法和深度神经网络应用于解决Gomoku游戏。我们设计了一个深度卷积神经网络模型来帮助机器从训练数据中学习。在我们的实验中,训练数据的准确率为69%,测试数据的准确率为38%。最后,我们将训练好的深度神经网络模型与硬编码的基于卷积的Gomoku评估函数相结合,形成了混合Gomoku人工智能(AI),进一步提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Fault Diagnosis and Maintenance Decision System for Production Line Based on Human-machine Multi- Information Fusion Do We Need More Training Samples For Text Classification? Risk Assessment for Big Data in Cloud: Security, Privacy and Trust Natural Language Processing for Productivity Metrics for Software Development Profiling in Enterprise Applications Feature Extraction Driven Modeling Attack Against Double Arbiter PUF and Its Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1