Self-learning Machine Method for Anomaly Detection in Real Time Data

Yuri Ardulov, K. Kucherova, S. Mescheryakov, D. Shchemelinin
{"title":"Self-learning Machine Method for Anomaly Detection in Real Time Data","authors":"Yuri Ardulov, K. Kucherova, S. Mescheryakov, D. Shchemelinin","doi":"10.1109/ICUMT.2018.8631225","DOIUrl":null,"url":null,"abstract":"Cloud service monitoring requires robustness. Usually the service and its Key Performance Indicators (KPIs) are growing incongruently along with the growth of cloud infrastructure, dependencies and feature set. Even with validated software, physical misconfiguration can cause the service failure and may lead to service outage. That is why it is important to automatically detect any abnormal behavior and integrate it with the Event Management System (EMS) for proper and timely escalation. This paper presents a lightweight anomaly detection method, which is able to identify the pattern of metric's behavior and will be able to adjust itself to possible pattern modification caused by either new service releases and/or natural changes of utilization.","PeriodicalId":211042,"journal":{"name":"2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)","volume":"28 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUMT.2018.8631225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cloud service monitoring requires robustness. Usually the service and its Key Performance Indicators (KPIs) are growing incongruently along with the growth of cloud infrastructure, dependencies and feature set. Even with validated software, physical misconfiguration can cause the service failure and may lead to service outage. That is why it is important to automatically detect any abnormal behavior and integrate it with the Event Management System (EMS) for proper and timely escalation. This paper presents a lightweight anomaly detection method, which is able to identify the pattern of metric's behavior and will be able to adjust itself to possible pattern modification caused by either new service releases and/or natural changes of utilization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时数据异常检测的自学习机方法
云服务监控需要健壮性。通常,服务及其关键性能指标(kpi)会随着云基础设施、依赖项和功能集的增长而不一致地增长。即使使用经过验证的软件,物理配置错误也可能导致服务失败,并可能导致服务中断。这就是为什么自动检测任何异常行为并将其与事件管理系统(EMS)集成以进行适当和及时的升级非常重要。本文提出了一种轻量级的异常检测方法,该方法能够识别度量的行为模式,并能够根据新服务发布和/或利用率的自然变化可能引起的模式修改进行自我调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobility Episode Discovery in the Mobile Networks Based on Enhanced Switching Kalman Filter Performance Analysis of the Offloading Scheme in a Fog Computing System Modeling, simulation and implementation of $\pmb{a}$ low- scale poultry farm control system On Value-at-Risk and Expected Shortfall of Financial Asset with Stochastic Pricing From Mobility Analysis to Mobility Hubs Discovery: A Concept Based on Using CDR Data of the Mobile Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1