Deep learning and inverse design of artificial electromagnetic materials

Willie J Padilla, Yang Deng, Simiao Ren, Jordan M. Malof
{"title":"Deep learning and inverse design of artificial electromagnetic materials","authors":"Willie J Padilla, Yang Deng, Simiao Ren, Jordan M. Malof","doi":"10.1117/12.2593081","DOIUrl":null,"url":null,"abstract":"Deep neural networks are empirically derived systems that have transformed research methods and are driving scientific discovery. Artificial electromagnetic materials, such as electromagnetic metamaterials, photonic crystals, and plasmonics, are research fields where deep neural network results evince the data driven approach; especially in cases where conventional computational and optimization methods have failed. We propose and demonstrate a deep learning method capable of finding accurate solutions to ill-posed inverse problems, where the conditions of existence and uniqueness are violated. A specific example of finding the metasurface geometry which yields a radiant exitance matching the external quantum efficiency of gallium antimonide is demonstrated.","PeriodicalId":389503,"journal":{"name":"Metamaterials, Metadevices, and Metasystems 2021","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metamaterials, Metadevices, and Metasystems 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2593081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep neural networks are empirically derived systems that have transformed research methods and are driving scientific discovery. Artificial electromagnetic materials, such as electromagnetic metamaterials, photonic crystals, and plasmonics, are research fields where deep neural network results evince the data driven approach; especially in cases where conventional computational and optimization methods have failed. We propose and demonstrate a deep learning method capable of finding accurate solutions to ill-posed inverse problems, where the conditions of existence and uniqueness are violated. A specific example of finding the metasurface geometry which yields a radiant exitance matching the external quantum efficiency of gallium antimonide is demonstrated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工电磁材料的深度学习与反设计
深度神经网络是经验推导的系统,它已经改变了研究方法,并正在推动科学发现。人工电磁材料,如电磁超材料、光子晶体和等离子体,是深度神经网络结果证明数据驱动方法的研究领域;特别是在传统计算和优化方法失效的情况下。我们提出并演示了一种深度学习方法,该方法能够找到违反存在性和唯一性条件的病态逆问题的精确解。本文还举例说明了如何找到与锑化镓外量子效率相匹配的超表面几何结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Disrupting the photonics innovation cycle with data- and physics-driven algorithms Revealing the energy spectrum of plasmonic hot-carriers via single molecule transport measurements Engineered epsilon-near-zero metafilm with Ag-SiNx multilayer structure Surface roughness simulation in topologically complex optical metadevices and metasystems Designing hybrid lenses using metaoptics for enhanced optical performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1