{"title":"Sequential sampling for Bayesian robust ranking and selection","authors":"Xiaowei Zhang, Liang Ding","doi":"10.1109/WSC.2016.7822139","DOIUrl":null,"url":null,"abstract":"We consider a Bayesian ranking and selection problem in the presence of input distribution uncertainty. The distribution uncertainty is treated from a robust perspective. A naive extension of the knowledge gradient (KG) policy fails to converge in the new robust setting. We propose several stationary policies that extend KG in various aspects. Numerical experiments show that the proposed policies have excellent performance in terms of both probability of correction selection and normalized opportunity cost.","PeriodicalId":367269,"journal":{"name":"2016 Winter Simulation Conference (WSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2016.7822139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We consider a Bayesian ranking and selection problem in the presence of input distribution uncertainty. The distribution uncertainty is treated from a robust perspective. A naive extension of the knowledge gradient (KG) policy fails to converge in the new robust setting. We propose several stationary policies that extend KG in various aspects. Numerical experiments show that the proposed policies have excellent performance in terms of both probability of correction selection and normalized opportunity cost.