Sequential sampling for Bayesian robust ranking and selection

Xiaowei Zhang, Liang Ding
{"title":"Sequential sampling for Bayesian robust ranking and selection","authors":"Xiaowei Zhang, Liang Ding","doi":"10.1109/WSC.2016.7822139","DOIUrl":null,"url":null,"abstract":"We consider a Bayesian ranking and selection problem in the presence of input distribution uncertainty. The distribution uncertainty is treated from a robust perspective. A naive extension of the knowledge gradient (KG) policy fails to converge in the new robust setting. We propose several stationary policies that extend KG in various aspects. Numerical experiments show that the proposed policies have excellent performance in terms of both probability of correction selection and normalized opportunity cost.","PeriodicalId":367269,"journal":{"name":"2016 Winter Simulation Conference (WSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2016.7822139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We consider a Bayesian ranking and selection problem in the presence of input distribution uncertainty. The distribution uncertainty is treated from a robust perspective. A naive extension of the knowledge gradient (KG) policy fails to converge in the new robust setting. We propose several stationary policies that extend KG in various aspects. Numerical experiments show that the proposed policies have excellent performance in terms of both probability of correction selection and normalized opportunity cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
序列抽样的贝叶斯鲁棒排序和选择
我们考虑了一个存在输入分布不确定性的贝叶斯排序和选择问题。从鲁棒性的角度来处理分布的不确定性。知识梯度(KG)策略的朴素扩展在新的鲁棒设置中不能收敛。我们提出了几个固定的政策,在各个方面扩展KG。数值实验表明,所提策略在修正选择概率和归一化机会成本方面都具有优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Simheuristics with Petri net models: Potential applications to logistics and supply chain management A ship block logistics support system based on the shipyard simulation framework Modeling & simulation's role as a service to military and homeland security decision makers Multiple comparisons with a standard using false discovery rates Lean design and analysis of a milk-run delivery system: Case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1