{"title":"Path Design for Portable Access Point in Joint Sensing and Communications under Energy Constraints","authors":"Xiaoye Jing, F. Liu, C. Masouros","doi":"10.1109/VTC2022-Fall57202.2022.10013006","DOIUrl":null,"url":null,"abstract":"We consider an unmanned aerial vehicle (UAV) based joint radar localization and communication system, where a UAV transmits the downlink signal to a ground communication user and the transmitted signal is also exploited to localize a target coordinates. We aim to optimize the UAV path with energy constraints. We formulate the trajectory design into a weighted optimization problem, where a scalable performance trade-off between localization and communication can be achieved. An iterative algorithm is exploited then to address the trajectory design formulation. Numerical results are provided to validate the effectiveness of the proposed UAV trajectory design approaches.","PeriodicalId":326047,"journal":{"name":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2022-Fall57202.2022.10013006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider an unmanned aerial vehicle (UAV) based joint radar localization and communication system, where a UAV transmits the downlink signal to a ground communication user and the transmitted signal is also exploited to localize a target coordinates. We aim to optimize the UAV path with energy constraints. We formulate the trajectory design into a weighted optimization problem, where a scalable performance trade-off between localization and communication can be achieved. An iterative algorithm is exploited then to address the trajectory design formulation. Numerical results are provided to validate the effectiveness of the proposed UAV trajectory design approaches.