Efficient RT-level fault diagnosis methodology

O. Sinanoglu, A. Orailoglu
{"title":"Efficient RT-level fault diagnosis methodology","authors":"O. Sinanoglu, A. Orailoglu","doi":"10.1109/ASPDAC.2004.1337568","DOIUrl":null,"url":null,"abstract":"Increasing IC densities necessitate diagnosis methodologies with enhanced defect locating capabilities. Yet the computational effort expended in extracting diagnostic information and the stringent storage requirements constitute major concerns due to the tremendous number of faults in typical ICs. We propose an RT-level diagnosis methodology capable of responding to these challenges. In the proposed scheme, diagnostic information is computed on a grouped fault effect basis, enhancing both the storage and the computational aspects. The fault effect grouping criteria are identified based on a module structure analysis, improving the propagation ability of the diagnostic information through RT modules. Experimental results show that the proposed methodology provides superior speed-ups and significant diagnostic information compression at no sacrifice in diagnostic resolution, compared to the existing gate-level diagnosis approaches.","PeriodicalId":426349,"journal":{"name":"ASP-DAC 2004: Asia and South Pacific Design Automation Conference 2004 (IEEE Cat. No.04EX753)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASP-DAC 2004: Asia and South Pacific Design Automation Conference 2004 (IEEE Cat. No.04EX753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2004.1337568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing IC densities necessitate diagnosis methodologies with enhanced defect locating capabilities. Yet the computational effort expended in extracting diagnostic information and the stringent storage requirements constitute major concerns due to the tremendous number of faults in typical ICs. We propose an RT-level diagnosis methodology capable of responding to these challenges. In the proposed scheme, diagnostic information is computed on a grouped fault effect basis, enhancing both the storage and the computational aspects. The fault effect grouping criteria are identified based on a module structure analysis, improving the propagation ability of the diagnostic information through RT modules. Experimental results show that the proposed methodology provides superior speed-ups and significant diagnostic information compression at no sacrifice in diagnostic resolution, compared to the existing gate-level diagnosis approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效的rt级故障诊断方法
增加集成电路密度需要具有增强缺陷定位能力的诊断方法。然而,由于典型集成电路中存在大量故障,在提取诊断信息方面所花费的计算工作量和严格的存储要求构成了主要问题。我们提出了一种能够应对这些挑战的rt水平诊断方法。在该方案中,诊断信息以分组故障效应为基础进行计算,提高了存储和计算能力。在分析模块结构的基础上,确定了故障效应分组标准,提高了诊断信息在RT模块中的传播能力。实验结果表明,与现有的门级诊断方法相比,该方法在不牺牲诊断分辨率的情况下提供了优越的加速和显著的诊断信息压缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fixed-outline floorplanning through evolutionary search Optimal design of high fan-in multiplexers via mixed-integer nonlinear programming A V/sub DD/ and temperature independent CMOS voltage reference circuit Energy efficient code generation exploiting reduced bit-width instruction set architectures (rISA) Improvement of saturation characteristics of a frequency-demodulation CMOS image sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1