OBSTRUCTED VEHICLE-TO-VEHICLE CHANNEL MODELING FOR INTELLIGENT VEHICULAR COMMUNICATIONS

K. Guan, B. Ai, Danping He, D. Matolak, Qi Wang, Z. Zhong, T. Kürner
{"title":"OBSTRUCTED VEHICLE-TO-VEHICLE CHANNEL MODELING FOR INTELLIGENT VEHICULAR COMMUNICATIONS","authors":"K. Guan, B. Ai, Danping He, D. Matolak, Qi Wang, Z. Zhong, T. Kürner","doi":"10.1109/GLOBALSIP.2018.8646585","DOIUrl":null,"url":null,"abstract":"In this paper, we model obstructed vehicle-to-vehicle (V2V) channels for the 5-GHz band through measurement-validated ray-tracing (RT) simulations. To begin, we establish a realistic V2V RT simulator through integrating three key channel features: small-scale structures (e.g. lampposts, traffic signs), handled by their approximate radar cross sections; large-scale structures (such as buildings and ground), calibrating their electromagnetic and scattering parameters; and obstructing vehicle effects via V2V channel measurements. Then, based on extensive RT simulations, the target channels are characterized comprehensively. All the parameters are input into and verified by the 3GPP-like quasi deterministic radio channel generator (QuaDRiGa). By adding the obstructed V2V scenario into standard channel model families, this paper provides a foundation for evaluating intelligent vehicular communications in challenging conditions.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBALSIP.2018.8646585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we model obstructed vehicle-to-vehicle (V2V) channels for the 5-GHz band through measurement-validated ray-tracing (RT) simulations. To begin, we establish a realistic V2V RT simulator through integrating three key channel features: small-scale structures (e.g. lampposts, traffic signs), handled by their approximate radar cross sections; large-scale structures (such as buildings and ground), calibrating their electromagnetic and scattering parameters; and obstructing vehicle effects via V2V channel measurements. Then, based on extensive RT simulations, the target channels are characterized comprehensively. All the parameters are input into and verified by the 3GPP-like quasi deterministic radio channel generator (QuaDRiGa). By adding the obstructed V2V scenario into standard channel model families, this paper provides a foundation for evaluating intelligent vehicular communications in challenging conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向智能车辆通信的受阻车对车信道建模
在本文中,我们通过测量验证的射线追踪(RT)模拟,对5 ghz频段的受阻车对车(V2V)通道进行建模。首先,我们通过整合三个关键通道特征建立了一个逼真的V2V RT模拟器:小规模结构(例如灯柱,交通标志),由其近似雷达横截面处理;大型结构(如建筑物和地面),校准其电磁和散射参数;并通过V2V通道测量阻碍车辆效应。然后,在大量RT仿真的基础上,对目标信道进行了全面表征。所有参数输入到类似3gpp的准确定性无线电信道发生器(QuaDRiGa)中并进行验证。通过将受阻V2V场景添加到标准信道模型族中,本文为评估具有挑战性条件下的智能车辆通信提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES CNN ARCHITECTURES FOR GRAPH DATA OVERT SPEECH RETRIEVAL FROM NEUROMAGNETIC SIGNALS USING WAVELETS AND ARTIFICIAL NEURAL NETWORKS CNN BASED RICIAN K FACTOR ESTIMATION FOR NON-STATIONARY INDUSTRIAL FADING CHANNEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1