A new algorithm of fuzzy support vector machine based on niche

Ying Huang, Wei Li
{"title":"A new algorithm of fuzzy support vector machine based on niche","authors":"Ying Huang, Wei Li","doi":"10.1109/NLPKE.2010.5587796","DOIUrl":null,"url":null,"abstract":"A new algorithm of fuzzy support vector machine based on niche is presented in this paper. In this algorithm, through comparing samples niche with class niche, the method of simply using Euclidean distance to measure the relationship of samples and class in the traditional support vector machine is changed by using the minimum radius in class niche, and the disadvantages of traditional support vector machine, which are sensitive to noise and outliers, and poor performance of differentiation of valid samples are overcome. Experimental data show that compared with the traditional support vector machine which only uses the distance between the sample and the center of class, this new algorithm can improve the convergence speed, and thus greatly enhance the discrimination between valid samples and noise samples.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new algorithm of fuzzy support vector machine based on niche is presented in this paper. In this algorithm, through comparing samples niche with class niche, the method of simply using Euclidean distance to measure the relationship of samples and class in the traditional support vector machine is changed by using the minimum radius in class niche, and the disadvantages of traditional support vector machine, which are sensitive to noise and outliers, and poor performance of differentiation of valid samples are overcome. Experimental data show that compared with the traditional support vector machine which only uses the distance between the sample and the center of class, this new algorithm can improve the convergence speed, and thus greatly enhance the discrimination between valid samples and noise samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小生境的模糊支持向量机新算法
提出了一种基于小生境的模糊支持向量机算法。该算法通过对样本生态位与类生态位的比较,改变了传统支持向量机简单使用欧氏距离来度量样本与类关系的方法,采用类生态位的最小半径,克服了传统支持向量机对噪声和离群点敏感、有效样本区分性能差的缺点。实验数据表明,与传统支持向量机仅利用样本与类中心之间的距离相比,该算法可以提高收敛速度,从而大大增强有效样本与噪声样本的区分能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dashboard: An integration and testing platform based on backboard architecture for NLP applications Chinese semantic role labeling based on semantic knowledge Transitivity in semantic relation learning Wisdom media “CAIWA Channel” based on natural language interface agent A new cascade algorithm based on CRFs for recognizing Chinese verb-object collocation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1