A Density-Based Clustering Algorithm for Uncertain Data

Hongmei Wang, Yingying Wang, S. Wan
{"title":"A Density-Based Clustering Algorithm for Uncertain Data","authors":"Hongmei Wang, Yingying Wang, S. Wan","doi":"10.1109/ICCSEE.2012.91","DOIUrl":null,"url":null,"abstract":"As the development of the data acquisition technology, the research of the uncertain data has been the center of people's attention, and at the same time, the cluster of the uncertain data has been in use widely. In this paper, after studying the cluster of the uncertain data, considering characters of the uncertain data, we propose a improved algorithm. We called it En-DBSCAN. In order to adapt the request of uncertain data's clustering we add probability factors and the theory of information entropy. The algorithm brings in a conception of probability radius to adjust uncertain data's scope of EPS neighborhood and information entropy to reduce center point's indeterminacy. Besides, this paper gives an analysis and confirmation about the algorithm.","PeriodicalId":132465,"journal":{"name":"2012 International Conference on Computer Science and Electronics Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Computer Science and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSEE.2012.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

As the development of the data acquisition technology, the research of the uncertain data has been the center of people's attention, and at the same time, the cluster of the uncertain data has been in use widely. In this paper, after studying the cluster of the uncertain data, considering characters of the uncertain data, we propose a improved algorithm. We called it En-DBSCAN. In order to adapt the request of uncertain data's clustering we add probability factors and the theory of information entropy. The algorithm brings in a conception of probability radius to adjust uncertain data's scope of EPS neighborhood and information entropy to reduce center point's indeterminacy. Besides, this paper gives an analysis and confirmation about the algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于密度的不确定数据聚类算法
随着数据采集技术的发展,对不确定数据的研究已成为人们关注的焦点,同时,不确定数据的聚类也得到了广泛的应用。本文在研究了不确定数据的聚类后,结合不确定数据的特点,提出了一种改进算法。我们称之为En-DBSCAN。为了适应不确定数据聚类的要求,我们加入了概率因子和信息熵理论。该算法引入了概率半径的概念来调整不确定数据的EPS邻域范围,引入了信息熵的概念来降低中心点的不确定性。此外,本文还对算法进行了分析和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey of Computer Facial Animation Techniques Elevator System and Control to Achieve Based on MCS-51 Singlechip An Ant Colony System Based Routing Algorithm for Wireless Sensor Network Sentiment Classification Based on Random Process A X-Ray CMOS Image Sensor Based on Current Mirroring Integration Readout Circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1