Fast Differentiable Transient Rendering for Non-Line-of-Sight Reconstruction

Markus Plack, C. Callenberg, M. Schneider, M. Hullin
{"title":"Fast Differentiable Transient Rendering for Non-Line-of-Sight Reconstruction","authors":"Markus Plack, C. Callenberg, M. Schneider, M. Hullin","doi":"10.1109/WACV56688.2023.00308","DOIUrl":null,"url":null,"abstract":"Research into non-line-of-sight imaging problems has gained momentum in recent years motivated by intriguing prospective applications in e.g. medicine and autonomous driving. While transient image formation is well understood and there exist various reconstruction approaches for non-line-of-sight scenes that combine efficient forward renderers with optimization schemes, those approaches suffer from runtimes in the order of hours even for moderately sized scenes. Furthermore, the ill-posedness of the inverse problem often leads to instabilities in the optimization.Inspired by the latest advances in direct-line-of-sight inverse rendering that have led to stunning results for reconstructing scene geometry and appearance, we present a fast differentiable transient renderer that accelerates the inverse rendering runtime to minutes on consumer hardware, making it possible to apply inverse transient imaging on a wider range of tasks and in more time-critical scenarios. We demonstrate its effectiveness on a series of applications using various datasets and show that it can be used for self-supervised learning.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Research into non-line-of-sight imaging problems has gained momentum in recent years motivated by intriguing prospective applications in e.g. medicine and autonomous driving. While transient image formation is well understood and there exist various reconstruction approaches for non-line-of-sight scenes that combine efficient forward renderers with optimization schemes, those approaches suffer from runtimes in the order of hours even for moderately sized scenes. Furthermore, the ill-posedness of the inverse problem often leads to instabilities in the optimization.Inspired by the latest advances in direct-line-of-sight inverse rendering that have led to stunning results for reconstructing scene geometry and appearance, we present a fast differentiable transient renderer that accelerates the inverse rendering runtime to minutes on consumer hardware, making it possible to apply inverse transient imaging on a wider range of tasks and in more time-critical scenarios. We demonstrate its effectiveness on a series of applications using various datasets and show that it can be used for self-supervised learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非视距重建的快速可微分瞬态渲染
近年来,由于在医学和自动驾驶等领域的潜在应用,对非视距成像问题的研究势头强劲。虽然瞬态图像形成很好理解,并且存在各种非视线场景的重建方法,这些方法结合了高效的前向渲染器和优化方案,但即使对于中等大小的场景,这些方法也需要几个小时的运行时间。此外,逆问题的病态性往往导致优化过程的不稳定性。受直接视线反向渲染的最新进展的启发,在重建场景几何形状和外观方面取得了惊人的结果,我们提出了一个快速可微分的瞬态渲染器,可将消费者硬件上的反向渲染运行时间加速到几分钟,从而可以在更广泛的任务范围和更多时间关键的场景中应用反向瞬态成像。我们在使用各种数据集的一系列应用中证明了它的有效性,并表明它可以用于自监督学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aggregating Bilateral Attention for Few-Shot Instance Localization Burst Reflection Removal using Reflection Motion Aggregation Cues Complementary Cues from Audio Help Combat Noise in Weakly-Supervised Object Detection Efficient Skeleton-Based Action Recognition via Joint-Mapping strategies Few-shot Object Detection via Improved Classification Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1