Accuracy and Diversity in Cross-domain Recommendations for Cold-start Users with Positive-only Feedback

Ignacio Fernández-Tobías, Paolo Tomeo, Iván Cantador, T. D. Noia, E. Sciascio
{"title":"Accuracy and Diversity in Cross-domain Recommendations for Cold-start Users with Positive-only Feedback","authors":"Ignacio Fernández-Tobías, Paolo Tomeo, Iván Cantador, T. D. Noia, E. Sciascio","doi":"10.1145/2959100.2959175","DOIUrl":null,"url":null,"abstract":"Computing useful recommendations for cold-start users is a major challenge in the design of recommender systems, and additional data is often required to compensate the scarcity of user feedback. In this paper we address such problem in a target domain by exploiting user preferences from a related auxiliary domain. Following a rigorous methodology for cold-start, we evaluate a number of recommendation methods on a dataset with positive-only feedback in the movie and music domains, both in single and cross-domain scenarios. Comparing the methods in terms of item ranking accuracy, diversity and catalog coverage, we show that cross-domain preference data is useful to provide more accurate suggestions when user feedback in the target domain is scarce or not available at all, and may lead to more diverse recommendations depending on the target domain. Moreover, evaluating the impact of the user profile size and diversity in the source domain, we show that, in general, the quality of target recommendations increases with the size of the profile, but may deteriorate with too diverse profiles.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Computing useful recommendations for cold-start users is a major challenge in the design of recommender systems, and additional data is often required to compensate the scarcity of user feedback. In this paper we address such problem in a target domain by exploiting user preferences from a related auxiliary domain. Following a rigorous methodology for cold-start, we evaluate a number of recommendation methods on a dataset with positive-only feedback in the movie and music domains, both in single and cross-domain scenarios. Comparing the methods in terms of item ranking accuracy, diversity and catalog coverage, we show that cross-domain preference data is useful to provide more accurate suggestions when user feedback in the target domain is scarce or not available at all, and may lead to more diverse recommendations depending on the target domain. Moreover, evaluating the impact of the user profile size and diversity in the source domain, we show that, in general, the quality of target recommendations increases with the size of the profile, but may deteriorate with too diverse profiles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纯正反馈下冷启动用户跨域推荐的准确性和多样性
为冷启动用户计算有用的推荐是推荐系统设计中的一个主要挑战,并且通常需要额外的数据来补偿用户反馈的稀缺性。在本文中,我们通过利用相关辅助领域的用户偏好来解决目标领域中的此类问题。遵循严格的冷启动方法,我们在电影和音乐领域的数据集上评估了许多推荐方法,这些方法在单域和跨域场景中都有正反馈。从商品排序精度、多样性和目录覆盖率三个方面比较,我们发现跨领域偏好数据有助于在目标领域用户反馈稀缺或根本无法获得的情况下提供更准确的推荐,并可能根据目标领域产生更多样化的推荐。此外,通过评估用户配置文件大小和源域多样性的影响,我们发现,一般情况下,目标推荐的质量随着配置文件的大小而增加,但如果配置文件过于多样化,则可能会下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opening Remarks Mining Information for the Cold-Item Problem Are You Influenced by Others When Rating?: Improve Rating Prediction by Conformity Modeling Contrasting Offline and Online Results when Evaluating Recommendation Algorithms Intent-Aware Diversification Using a Constrained PLSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1