Adaptive complex modified probabilistic neural network in digital channel equalization

J. Young, T. Hanselmann, A. Zaknich, Y. Attikiouzel
{"title":"Adaptive complex modified probabilistic neural network in digital channel equalization","authors":"J. Young, T. Hanselmann, A. Zaknich, Y. Attikiouzel","doi":"10.1109/ANZIIS.2001.974085","DOIUrl":null,"url":null,"abstract":"A novel adaptive technique is proposed for the complex-valued modified probabilistic neural network (MPNN). The adaptive feature is desirable when using the MPNN in channel equalization to track time-varying channels. The MPNN is initially trained using the clustering technique. When training is completed, the network is switched to decision-directed mode and the network parameters are adapted using stochastic gradient-based algorithms in an unsupervised manner. Simulations show that the equalizer was able to efficiently equalize 4-QAM symbol sequences transmitted through nonlinear, slowly time-varying channels.","PeriodicalId":383878,"journal":{"name":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","volume":"138 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZIIS.2001.974085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A novel adaptive technique is proposed for the complex-valued modified probabilistic neural network (MPNN). The adaptive feature is desirable when using the MPNN in channel equalization to track time-varying channels. The MPNN is initially trained using the clustering technique. When training is completed, the network is switched to decision-directed mode and the network parameters are adapted using stochastic gradient-based algorithms in an unsupervised manner. Simulations show that the equalizer was able to efficiently equalize 4-QAM symbol sequences transmitted through nonlinear, slowly time-varying channels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应复修正概率神经网络在数字信道均衡中的应用
针对复值修正概率神经网络(MPNN)提出了一种新的自适应方法。在信道均衡中使用MPNN跟踪时变信道时,需要具有自适应特性。MPNN最初使用聚类技术进行训练。当训练完成后,网络切换到决策导向模式,并使用基于随机梯度的算法以无监督的方式调整网络参数。仿真结果表明,该均衡器能够有效地均衡非线性慢时变信道传输的4-QAM符号序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mammogram JPEG quantisation matrix optimisation for PACS Static image simulation of electronic visual prostheses Ultrasound mediated transfection of HT29 colorectal cancer cells in vitro: preliminary results Gait symmetry quantification during treadmill walking Segmentation of clinical structures for radiotherapy treatment planning: a comparison of two morphological approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1