Binary search trees for vector quantisation

A. Lowry, Sqama Hossain, W. Millar
{"title":"Binary search trees for vector quantisation","authors":"A. Lowry, Sqama Hossain, W. Millar","doi":"10.1109/ICASSP.1987.1169380","DOIUrl":null,"url":null,"abstract":"This paper presents a data structure based on the k-d binary tree which substantially reduces the search complexity of a full search vector quantiser with negligible degradation in signal-to-noise ratio. The search complexity isk + O(\\logN)rather than N for a codebook of dimension k and size N. Special features of the structure are (1) the use of a rotational transform prior to encoding and (2) the computational efficiency of the design algorithm due to the simple structure of the k-d tree.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

This paper presents a data structure based on the k-d binary tree which substantially reduces the search complexity of a full search vector quantiser with negligible degradation in signal-to-noise ratio. The search complexity isk + O(\logN)rather than N for a codebook of dimension k and size N. Special features of the structure are (1) the use of a rotational transform prior to encoding and (2) the computational efficiency of the design algorithm due to the simple structure of the k-d tree.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
矢量量化的二叉搜索树
本文提出了一种基于k-d二叉树的数据结构,大大降低了全搜索矢量量化器的搜索复杂度,而信噪比的下降可以忽略不计。对于维度为k,大小为N的码本,搜索复杂度风险为+ O(\logN)而不是N。该结构的特殊特征是(1)在编码之前使用旋转变换,(2)由于k-d树的简单结构,设计算法的计算效率很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A high resolution data-adaptive time-frequency representation A fast prediction-error detector for estimating sparse-spike sequences Some applications of mathematical morphology to range imagery Parameter estimation using the autocorrelation of the discrete Fourier transform Array signal processing with interconnected Neuron-like elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1