Elimination of redundant information for Web data mining

S. Taib, Soon-ja Yeom, B. Kang
{"title":"Elimination of redundant information for Web data mining","authors":"S. Taib, Soon-ja Yeom, B. Kang","doi":"10.1109/ITCC.2005.143","DOIUrl":null,"url":null,"abstract":"These days, billions of Web pages are created with HTML or other markup languages. They only have a few uniform structures and contain various authoring styles compared to traditional text-based documents. However, users usually focus on a particular section of the page that presents the most relevant information to their interest. Therefore, Web documents classification needs to group and filter the pages based on their contents and relevant information. Many researches on Web mining report on mining Web structure and extracting information from Web contents. However, they have focused on detecting tables that convey specific data, not the tables that are used as a mechanism for structuring the layout of Web pages. Case modeling of tables can be constructed based on structure abstraction. Furthermore, Ripple Down Rules (RDR) is used to implement knowledge organization and construction, because it supports a simple rule maintenance based on case and local validation.","PeriodicalId":326887,"journal":{"name":"International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCC.2005.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

These days, billions of Web pages are created with HTML or other markup languages. They only have a few uniform structures and contain various authoring styles compared to traditional text-based documents. However, users usually focus on a particular section of the page that presents the most relevant information to their interest. Therefore, Web documents classification needs to group and filter the pages based on their contents and relevant information. Many researches on Web mining report on mining Web structure and extracting information from Web contents. However, they have focused on detecting tables that convey specific data, not the tables that are used as a mechanism for structuring the layout of Web pages. Case modeling of tables can be constructed based on structure abstraction. Furthermore, Ripple Down Rules (RDR) is used to implement knowledge organization and construction, because it supports a simple rule maintenance based on case and local validation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
消除冗余信息用于Web数据挖掘
如今,数十亿的Web页面都是用HTML或其他标记语言创建的。与传统的基于文本的文档相比,它们只有一些统一的结构,并且包含各种创作风格。然而,用户通常会把注意力集中在页面的特定部分,这些部分显示了与他们感兴趣的最相关的信息。因此,Web文档分类需要根据页面的内容和相关信息对页面进行分组和过滤。许多Web挖掘研究都是关于挖掘Web结构和从Web内容中提取信息的。但是,它们的重点是检测传递特定数据的表,而不是用于构建Web页面布局的机制的表。表的用例建模是基于结构抽象的。此外,Ripple Down Rules (RDR)用于实现知识组织和构建,因为它支持基于案例和局部验证的简单规则维护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Component metadata management and publication for the grid A mathematical investigation on retrieval performance evaluation measures of information retrieval algorithm Single-parameter blackjack betting systems inspired by scatter search A time-series biclustering algorithm for revealing co-regulated genes A methodology for evaluating agent toolkits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1