J. Ordonez-Miranda, M. A. Ras, B. Wunderle, S. Volz
{"title":"Modelling and measurement of the thermal conductivity of composites with silver particles","authors":"J. Ordonez-Miranda, M. A. Ras, B. Wunderle, S. Volz","doi":"10.1109/THERMINIC.2016.7749038","DOIUrl":null,"url":null,"abstract":"The effective thermal conductivity of composites made up of silver micro-particles embedded in a resin matrix is modelled and measured. This is done for spherical and flake-like particles to analyse the effects of the particles geometry and concentration on the composite thermal performance. It is experimentally found that spherical particles yield a higher thermal conductivity than the one given by flakes, such that it takes the value of 16 Wm-1 K-1 for a 50% volume fraction of particles. Furthermore, this behaviour is well described by a simple and analytical model, which takes into account the particle-particle interactions through a crowding factor. The obtained results could be useful to optimize the design and manufacture of composites with metallic particles.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THERMINIC.2016.7749038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The effective thermal conductivity of composites made up of silver micro-particles embedded in a resin matrix is modelled and measured. This is done for spherical and flake-like particles to analyse the effects of the particles geometry and concentration on the composite thermal performance. It is experimentally found that spherical particles yield a higher thermal conductivity than the one given by flakes, such that it takes the value of 16 Wm-1 K-1 for a 50% volume fraction of particles. Furthermore, this behaviour is well described by a simple and analytical model, which takes into account the particle-particle interactions through a crowding factor. The obtained results could be useful to optimize the design and manufacture of composites with metallic particles.