{"title":"Frequency controllable in vivo biological oscillators","authors":"N. Neihart, B. House","doi":"10.1109/BIOCAS.2008.4696863","DOIUrl":null,"url":null,"abstract":"This paper presents models and simulation results for two different tunable biological oscillators realized inside of the bacteria Escherichia Coli (E. coli). The first system considered is the Elowitz repressilator and simulations show that the period of oscillation can be varied between 151.4 minutes and 225.8 minutes. The second system is a relaxation oscillator whose period of oscillation varies between 61.8 minutes and 72.7 minutes. The period of oscillation of both oscillators is controlled using IPTG. These types of systems will be important in characterizing and developing models for the molecular and protein interactions within a biological cell.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents models and simulation results for two different tunable biological oscillators realized inside of the bacteria Escherichia Coli (E. coli). The first system considered is the Elowitz repressilator and simulations show that the period of oscillation can be varied between 151.4 minutes and 225.8 minutes. The second system is a relaxation oscillator whose period of oscillation varies between 61.8 minutes and 72.7 minutes. The period of oscillation of both oscillators is controlled using IPTG. These types of systems will be important in characterizing and developing models for the molecular and protein interactions within a biological cell.