Two-Dimensional Inverse FDA for Face Recognition

Wankou Yang, Hui Yan, Jun Yin, Jingyu Yang
{"title":"Two-Dimensional Inverse FDA for Face Recognition","authors":"Wankou Yang, Hui Yan, Jun Yin, Jingyu Yang","doi":"10.1109/CCPR.2008.51","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a two-dimensional Inverse Fisher Discriminant Analysis (2DIFDA) method for feature extraction and face recognition. This method combines the ideas of two-dimensional principal component analysis and Inverse FDA and it can directly extracts the optimal projective vectors from 2D image matrices rather than image vectors based on the inverse fisher discriminant criterion. Experiments on the FERET face databases show that the new method outperforms the PCA , 2DPCA, Fisherfaces and the inverse fisher discriminant analysis.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"11647 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose a two-dimensional Inverse Fisher Discriminant Analysis (2DIFDA) method for feature extraction and face recognition. This method combines the ideas of two-dimensional principal component analysis and Inverse FDA and it can directly extracts the optimal projective vectors from 2D image matrices rather than image vectors based on the inverse fisher discriminant criterion. Experiments on the FERET face databases show that the new method outperforms the PCA , 2DPCA, Fisherfaces and the inverse fisher discriminant analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维逆FDA人脸识别
本文提出了一种用于特征提取和人脸识别的二维反费雪判别分析(2DIFDA)方法。该方法结合了二维主成分分析和逆FDA的思想,可以直接从二维图像矩阵中提取最优的投影向量,而不是基于逆fisher判别准则的图像向量。在FERET人脸数据库上的实验表明,该方法优于PCA、2DPCA、Fisherfaces和逆fisher判别分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Gait Recognition Method Based on Standard Deviation Energy Image A New Method for Facial Beauty Assessment Content-Based Semantic Indexing of Image using Fuzzy Support Vector Machines Stochastic Segment Model Decoding Algorithm Based on Neighboring Segments and its Application in LVCSR Study on Highlights Detection in Soccer Video Based on the Location of Slow Motion Replay and Goal Net Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1