Enabling resonant clock distribution with scaled on-chip magnetic inductors

S. Sinha, W. Xu, J. Velamala, T. Dastagir, B. Bakkaloglu, Hongbin Yu, Yu Cao
{"title":"Enabling resonant clock distribution with scaled on-chip magnetic inductors","authors":"S. Sinha, W. Xu, J. Velamala, T. Dastagir, B. Bakkaloglu, Hongbin Yu, Yu Cao","doi":"10.1109/ICCD.2009.5413169","DOIUrl":null,"url":null,"abstract":"Resonant clock distribution with distributed LC oscillators is promising to reducing clock power and jitter noise. Yet the difficulty in the integration of on-chip inductors still limits its application in practice. This paper resolves such a key issue with sub-50 µm magnetic inductors, which are fully compatible with the CMOS process. These inductors leverage soft magnetic coils to achieve inductances up to 4nH, Q-factor of 3 at 1 GHz with a device diameter of only 30–50 µm, resulting in area savings of nearly 100X as compared to conventional design. The latency and noise performance of the resonant clock network is demonstrated to be comparable to those using conventional inductors without soft magnetic materials. In addition, inductors with integrated magnetic materials significantly reduce mutual coupling and eddy current loss in the power grid below the clock network. These design advantages enable high density of on-chip distributed oscillators, providing better phase averaging, lower power and superior noise characteristics as compared to traditional buffer-tree based clock network.","PeriodicalId":256908,"journal":{"name":"2009 IEEE International Conference on Computer Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2009.5413169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Resonant clock distribution with distributed LC oscillators is promising to reducing clock power and jitter noise. Yet the difficulty in the integration of on-chip inductors still limits its application in practice. This paper resolves such a key issue with sub-50 µm magnetic inductors, which are fully compatible with the CMOS process. These inductors leverage soft magnetic coils to achieve inductances up to 4nH, Q-factor of 3 at 1 GHz with a device diameter of only 30–50 µm, resulting in area savings of nearly 100X as compared to conventional design. The latency and noise performance of the resonant clock network is demonstrated to be comparable to those using conventional inductors without soft magnetic materials. In addition, inductors with integrated magnetic materials significantly reduce mutual coupling and eddy current loss in the power grid below the clock network. These design advantages enable high density of on-chip distributed oscillators, providing better phase averaging, lower power and superior noise characteristics as compared to traditional buffer-tree based clock network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使共振时钟分布与缩放片上磁电感
采用分布式LC振荡器进行谐振时钟分布,有望降低时钟功耗和抖动噪声。然而,片上电感集成的困难仍然限制了其在实际中的应用。本文用低于50µm的磁电感器解决了这一关键问题,该电感器完全兼容CMOS工艺。这些电感器利用软磁线圈实现高达4nH的电感,在1ghz时q因子为3,器件直径仅为30-50 μ m,与传统设计相比,面积节省近100倍。谐振时钟网络的延迟和噪声性能可与使用传统电感器而不使用软磁材料的电感器相媲美。此外,集成磁性材料的电感器显著降低了时钟网络以下电网的互耦和涡流损耗。与传统的基于缓冲树的时钟网络相比,这些设计优势可以实现高密度的片上分布式振荡器,提供更好的相位平均,更低的功耗和更优越的噪声特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical performance models for 3T1D memories A novel SoC architecture on FPGA for ultra fast face detection A Technology-Agnostic Simulation Environment (TASE) for iterative custom IC design across processes Low-overhead error detection for Networks-on-Chip Interconnect performance corners considering crosstalk noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1