An Adaptive Appearance Model Approach for Model-based Articulated Object Tracking

A. O. Balan, Michael J. Black
{"title":"An Adaptive Appearance Model Approach for Model-based Articulated Object Tracking","authors":"A. O. Balan, Michael J. Black","doi":"10.1109/CVPR.2006.52","DOIUrl":null,"url":null,"abstract":"The detection and tracking of three-dimensional human body models has progressed rapidly but successful approaches typically rely on accurate foreground silhouettes obtained using background segmentation. There are many practical applications where such information is imprecise. Here we develop a new image likelihood function based on the visual appearance of the subject being tracked. We propose a robust, adaptive, appearance model based on the Wandering-Stable-Lost framework extended to the case of articulated body parts. The method models appearance using a mixture model that includes an adaptive template, frame-to-frame matching and an outlier process. We employ an annealed particle filtering algorithm for inference and take advantage of the 3D body model to predict selfocclusion and improve pose estimation accuracy. Quantitative tracking results are presented for a walking sequence with a 180 degree turn, captured with four synchronized and calibrated cameras and containing significant appearance changes and self-occlusion in each view.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

Abstract

The detection and tracking of three-dimensional human body models has progressed rapidly but successful approaches typically rely on accurate foreground silhouettes obtained using background segmentation. There are many practical applications where such information is imprecise. Here we develop a new image likelihood function based on the visual appearance of the subject being tracked. We propose a robust, adaptive, appearance model based on the Wandering-Stable-Lost framework extended to the case of articulated body parts. The method models appearance using a mixture model that includes an adaptive template, frame-to-frame matching and an outlier process. We employ an annealed particle filtering algorithm for inference and take advantage of the 3D body model to predict selfocclusion and improve pose estimation accuracy. Quantitative tracking results are presented for a walking sequence with a 180 degree turn, captured with four synchronized and calibrated cameras and containing significant appearance changes and self-occlusion in each view.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型的关节目标跟踪的自适应外观模型方法
三维人体模型的检测和跟踪进展迅速,但成功的方法通常依赖于通过背景分割获得准确的前景轮廓。在许多实际应用中,这些信息是不精确的。在这里,我们基于被跟踪对象的视觉外观开发了一个新的图像似然函数。我们提出了一个鲁棒的,自适应的,基于流浪-稳定-丢失框架的外观模型,扩展到铰接的身体部位。该方法使用混合模型对外观进行建模,该混合模型包括自适应模板、帧对帧匹配和离群值处理。我们采用退火粒子滤波算法进行推理,并利用三维身体模型来预测自聚焦,提高姿态估计精度。定量跟踪结果展示了一个180度转弯的行走序列,由四个同步和校准的相机捕获,每个视图中包含显著的外观变化和自遮挡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image Efficient Maximally Stable Extremal Region (MSER) Tracking Transformation invariant component analysis for binary images Region-Tree Based Stereo Using Dynamic Programming Optimization Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1