{"title":"Improved power estimation for behavioral and gate level designs","authors":"R. L. Wright, M. Shanblatt","doi":"10.1109/IWV.2001.923147","DOIUrl":null,"url":null,"abstract":"A technique is presented for accurately computing the power of digital circuits described by behavioral- and gate-level designs. Accurate power estimation for high-level designs provides early warning of potential power problems, supporting design flexibility and a reduction of time and cost. The technique uses a behavioral VHDL specification or gate-level netlist as input. For a variety of combinational benchmark circuits, assuming the zero-delay model and uncorrelated primary inputs, the approach has been tested and compared with the Berkeley SIS power estimator. The proposed technique has been implemented in a program called the Behavioral Level Activity and Power Estimator (BLAPE). Experimental results demonstrate a savings in time with an average error less than 1.00%.","PeriodicalId":114059,"journal":{"name":"Proceedings IEEE Computer Society Workshop on VLSI 2001. Emerging Technologies for VLSI Systems","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Computer Society Workshop on VLSI 2001. Emerging Technologies for VLSI Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWV.2001.923147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
A technique is presented for accurately computing the power of digital circuits described by behavioral- and gate-level designs. Accurate power estimation for high-level designs provides early warning of potential power problems, supporting design flexibility and a reduction of time and cost. The technique uses a behavioral VHDL specification or gate-level netlist as input. For a variety of combinational benchmark circuits, assuming the zero-delay model and uncorrelated primary inputs, the approach has been tested and compared with the Berkeley SIS power estimator. The proposed technique has been implemented in a program called the Behavioral Level Activity and Power Estimator (BLAPE). Experimental results demonstrate a savings in time with an average error less than 1.00%.