{"title":"Freeform machining of ophthalmic toric lens mould using fast tool servo-assisted ultra-precision diamond turning process","authors":"I. Singh, G. S, T. N. Reddy, P. Vinod","doi":"10.1177/2516598420939745","DOIUrl":null,"url":null,"abstract":"This research aims to establish a methodology for machining of toric lenses, using fast tool servo-assisted single point diamond turning and to assess the generated surface for its characteristics. Using the established mathematical model, toric surface is explained to understand the geometry and to generate the parameters required for fast tool servo machining. A toric surface with a major diameter of 18.93 mm and a minor diameter of 15.12 mm has been cut on the intelligent ultra-precision turning machine (iUPTM). The surface profile and surface roughness were measured. After analysing the measurement data of the machined surface, on two perpendicular axes of the toric lens, form accuracy of 0.49 µm peak-to-valley (PV), and surface roughness of 12 nm in Ra, 4–8 nm in Sa are obtained. From the experimental results obtained, it can be concluded that the proposed method is a reasonable alternative for manufacturing toric lens mould.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2516598420939745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This research aims to establish a methodology for machining of toric lenses, using fast tool servo-assisted single point diamond turning and to assess the generated surface for its characteristics. Using the established mathematical model, toric surface is explained to understand the geometry and to generate the parameters required for fast tool servo machining. A toric surface with a major diameter of 18.93 mm and a minor diameter of 15.12 mm has been cut on the intelligent ultra-precision turning machine (iUPTM). The surface profile and surface roughness were measured. After analysing the measurement data of the machined surface, on two perpendicular axes of the toric lens, form accuracy of 0.49 µm peak-to-valley (PV), and surface roughness of 12 nm in Ra, 4–8 nm in Sa are obtained. From the experimental results obtained, it can be concluded that the proposed method is a reasonable alternative for manufacturing toric lens mould.