DSEAdd: FPGA based Design Space Exploration for Approximate Adders with Variable Bit-precision

Archie Mishra, N. Rao
{"title":"DSEAdd: FPGA based Design Space Exploration for Approximate Adders with Variable Bit-precision","authors":"Archie Mishra, N. Rao","doi":"10.1109/ISQED57927.2023.10129364","DOIUrl":null,"url":null,"abstract":"Functional approximation methods have been used to exploit the inherent error tolerance of several applications. Approximate computing reduces the resources utilized at the cost of acceptable accuracy loss. Designers need to follow a systematic approach to arrive at an optimized design configuration based on certain constraints. In this work, we present DSEAdd: an FPGA-based automated design space exploration (DSE) framework targeting variable bit-width approximate adders. Given a certain area, timing or accuracy (ATA) constraint, the approach helps to identify the best adder configuration. We introduce a metric known as Figure of Merit (FOM) to quantify the area, performance and accuracy of the design. We test the DSE framework by running a set of 74 design configurations. We demonstrate the use of FOM as a metric to choose the best adder configuration. We observe that we can obtain an area-optimized design with a 9.7% reduction in resource usage at the cost of only 0.3% accuracy, but with a lower bit precision (8-bit instead of 32-bits). Further, at low bit precisions, a slight compromise in the area (0.35%) can help improve the accuracy dramatically (17.7%). To achieve the best trade-off between accuracy and resources, we propose a configuration with 2 or 3 sub-adders. Lastly, we note that a performance-optimized design is difficult to achieve at higher bit-precision.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 24th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED57927.2023.10129364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Functional approximation methods have been used to exploit the inherent error tolerance of several applications. Approximate computing reduces the resources utilized at the cost of acceptable accuracy loss. Designers need to follow a systematic approach to arrive at an optimized design configuration based on certain constraints. In this work, we present DSEAdd: an FPGA-based automated design space exploration (DSE) framework targeting variable bit-width approximate adders. Given a certain area, timing or accuracy (ATA) constraint, the approach helps to identify the best adder configuration. We introduce a metric known as Figure of Merit (FOM) to quantify the area, performance and accuracy of the design. We test the DSE framework by running a set of 74 design configurations. We demonstrate the use of FOM as a metric to choose the best adder configuration. We observe that we can obtain an area-optimized design with a 9.7% reduction in resource usage at the cost of only 0.3% accuracy, but with a lower bit precision (8-bit instead of 32-bits). Further, at low bit precisions, a slight compromise in the area (0.35%) can help improve the accuracy dramatically (17.7%). To achieve the best trade-off between accuracy and resources, we propose a configuration with 2 or 3 sub-adders. Lastly, we note that a performance-optimized design is difficult to achieve at higher bit-precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于FPGA的可变位精度近似加法器的设计空间探索
泛函近似方法已被用于开发几种应用的固有容错性。近似计算以可接受的精度损失为代价,减少了资源的利用。设计师需要遵循一种系统的方法,以达到基于某些约束的优化设计配置。在这项工作中,我们提出了DSEAdd:一个基于fpga的自动设计空间探索(DSE)框架,目标是可变位宽近似加法器。给定一定的面积、时间或精度(ATA)约束,该方法有助于确定最佳加法器配置。我们引入了一个被称为优点图(FOM)的度量来量化设计的面积、性能和精度。我们通过运行一组74个设计配置来测试DSE框架。我们将演示使用FOM作为选择最佳加法器配置的度量。我们观察到,我们可以获得一个面积优化设计,在只有0.3%精度的代价下,资源使用减少了9.7%,但比特精度较低(8位而不是32位)。此外,在较低的比特精度下,稍微降低0.35%的面积可以显著提高精度(17.7%)。为了实现精度和资源之间的最佳权衡,我们提出了一个具有2或3个子加法器的配置。最后,我们注意到性能优化设计很难在更高的位精度下实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metal Inter-layer Via Keep-out-zone in M3D IC: A Critical Process-aware Design Consideration HD2FPGA: Automated Framework for Accelerating Hyperdimensional Computing on FPGAs A Novel Stochastic LSTM Model Inspired by Quantum Machine Learning DC-Model: A New Method for Assisting the Analog Circuit Optimization Polynomial Formal Verification of a Processor: A RISC-V Case Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1