Electronic-nose for plant health monitoring in a closed environment system

A. Takshi, M. S. Hossain
{"title":"Electronic-nose for plant health monitoring in a closed environment system","authors":"A. Takshi, M. S. Hossain","doi":"10.1117/12.2632828","DOIUrl":null,"url":null,"abstract":"With the net zero carbon emissions target by 2050, in the agricultural sector, it is essential to employ technologies to reduce the consumption of energy and resources while enhancing the yield of crops. Learning about how measurable signals can indicate the growth status of various plants will be beneficial for designing plant health monitoring systems (PHMSs) that can be used around the globe for the efficient growth of plants. In this work, we have designed and employed an array of gas sensors, acting as an electronic nose, to monitor the health status of lettuce being grown in a chamber by measuring the emission and consumption of various gases and volatile organic compounds (VOCs). While emission of ethylene is a strong indicator, we have found that accurate concentration measurements of CO2 and alcohols can also be used to assess the health status of the plant at its different stages of growth, particularly at the seedling and vegetative stages. ~20% change in the alcohol concentration and more than 2 folds increase in the equivalent CO2 level was observed when brown leaves started growing before the plant died. The results of the studies can help to design a simple PHMS that can help grow vegetables at a high yield with minimum supervision","PeriodicalId":145218,"journal":{"name":"Organic Photonics + Electronics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Photonics + Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2632828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the net zero carbon emissions target by 2050, in the agricultural sector, it is essential to employ technologies to reduce the consumption of energy and resources while enhancing the yield of crops. Learning about how measurable signals can indicate the growth status of various plants will be beneficial for designing plant health monitoring systems (PHMSs) that can be used around the globe for the efficient growth of plants. In this work, we have designed and employed an array of gas sensors, acting as an electronic nose, to monitor the health status of lettuce being grown in a chamber by measuring the emission and consumption of various gases and volatile organic compounds (VOCs). While emission of ethylene is a strong indicator, we have found that accurate concentration measurements of CO2 and alcohols can also be used to assess the health status of the plant at its different stages of growth, particularly at the seedling and vegetative stages. ~20% change in the alcohol concentration and more than 2 folds increase in the equivalent CO2 level was observed when brown leaves started growing before the plant died. The results of the studies can help to design a simple PHMS that can help grow vegetables at a high yield with minimum supervision
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于封闭环境系统植物健康监测的电子鼻
为了实现到2050年实现净零碳排放的目标,在农业部门,必须采用技术来减少能源和资源的消耗,同时提高作物产量。了解可测量信号如何指示各种植物的生长状态将有助于设计植物健康监测系统(PHMSs),该系统可在全球范围内用于植物的有效生长。在这项工作中,我们设计并采用了一系列气体传感器,作为电子鼻,通过测量各种气体和挥发性有机化合物(VOCs)的排放和消耗来监测生菜在室内生长的健康状况。虽然乙烯的排放是一个强有力的指标,但我们发现,二氧化碳和酒精的精确浓度测量也可用于评估植物在其不同生长阶段的健康状况,特别是在幼苗和营养阶段。在植物死亡之前,当棕色叶片开始生长时,观察到酒精浓度变化约20%,等效二氧化碳浓度增加2倍以上。这些研究的结果可以帮助设计一个简单的PHMS,可以帮助在最少的监督下种植高产量的蔬菜
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of amylose and tailored amylose matrices for scavenging iodide Chemiluminescent detection of nucleic acids induced by peroxidase-like targeted DNA-nanomachines (PxDm) mixed with plasmonic nanoparticles Synthesis and characterization of cesium europium chloride bromide lead-free Perovskite nanocrystals Effect of reaction temperature on CsPbBr3 perovskite quantum dots with photovoltaic applications Reduced graphene oxide (rGO)-CsSnI3 nanocomposites: A cost-effective technique to improve the structural and optical properties for optoelectronic device applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1