Recovering Extremely Degraded Faces by Joint Super-Resolution and Facial Composite

Xiu Li, Guichun Duan, Zhouxia Wang, Jimmy S. J. Ren, Yongbing Zhang, Jiawei Zhang, Kaixiang Song
{"title":"Recovering Extremely Degraded Faces by Joint Super-Resolution and Facial Composite","authors":"Xiu Li, Guichun Duan, Zhouxia Wang, Jimmy S. J. Ren, Yongbing Zhang, Jiawei Zhang, Kaixiang Song","doi":"10.1109/ICTAI.2019.00079","DOIUrl":null,"url":null,"abstract":"In the past a few years, we witnessed rapid advancement in face super-resolution from very low resolution(VLR) images. However, most of the previous studies focus on solving such problem without explicitly considering the impact of severe real-life image degradation (e.g. blur and noise). We can show that robustly recover details from VLR images is a task beyond the ability of current state-of-the-art method. In this paper, we borrow ideas from \"facial composite\" and propose an alternative approach to tackle this problem. We endow the degraded VLR images with additional cues by integrating existing face components from multiple reference images into a novel learning pipeline with both low level and high level semantic loss function as well as a specialized adversarial based training scheme. We show that our method is able to effectively and robustly restore relevant facial details from 16x16 images with extreme degradation. We also tested our approach against real-life images and our method performs favorably against previous methods.","PeriodicalId":346657,"journal":{"name":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2019.00079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In the past a few years, we witnessed rapid advancement in face super-resolution from very low resolution(VLR) images. However, most of the previous studies focus on solving such problem without explicitly considering the impact of severe real-life image degradation (e.g. blur and noise). We can show that robustly recover details from VLR images is a task beyond the ability of current state-of-the-art method. In this paper, we borrow ideas from "facial composite" and propose an alternative approach to tackle this problem. We endow the degraded VLR images with additional cues by integrating existing face components from multiple reference images into a novel learning pipeline with both low level and high level semantic loss function as well as a specialized adversarial based training scheme. We show that our method is able to effectively and robustly restore relevant facial details from 16x16 images with extreme degradation. We also tested our approach against real-life images and our method performs favorably against previous methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
联合超分辨率和人脸合成技术恢复极度退化的人脸
在过去的几年中,我们见证了极低分辨率(VLR)图像在人脸超分辨率方面的快速发展。然而,以往的研究大多侧重于解决这一问题,而没有明确考虑现实生活中严重的图像退化(如模糊和噪声)的影响。我们可以证明,从VLR图像中稳健地恢复细节是一项超出当前最先进方法能力的任务。在本文中,我们借鉴了“面部复合材料”的思想,并提出了一种解决这一问题的替代方法。我们通过将来自多个参考图像的现有面部成分整合到一个具有低水平和高水平语义损失函数以及专门的基于对抗的训练方案的新型学习管道中,从而赋予退化的VLR图像额外的线索。我们的研究表明,我们的方法能够有效地、鲁棒地从极度退化的16x16图像中恢复相关的面部细节。我们还针对真实图像测试了我们的方法,与之前的方法相比,我们的方法表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monaural Music Source Separation using a ResNet Latent Separator Network Graph-Based Attention Networks for Aspect Level Sentiment Analysis A Multi-channel Neural Network for Imbalanced Emotion Recognition Scaling up Prediction of Psychosis by Natural Language Processing Improving Bandit-Based Recommendations with Spatial Context Reasoning: An Online Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1