Rethinking Optical Flow Methods for Micro-Expression Spotting

Yuan Zhao, Xin Tong, Zichong Zhu, Jianda Sheng, Lei Dai, Lingling Xu, Xuehai Xia, Y. Jiang, Jiao Li
{"title":"Rethinking Optical Flow Methods for Micro-Expression Spotting","authors":"Yuan Zhao, Xin Tong, Zichong Zhu, Jianda Sheng, Lei Dai, Lingling Xu, Xuehai Xia, Y. Jiang, Jiao Li","doi":"10.1145/3503161.3551602","DOIUrl":null,"url":null,"abstract":"Micro-expressions (MEs) spotting is popular in some fields, for example, criminal investigation and business communication. But it is still a challenging task to spot the onset and offset of MEs accurately in long videos. This paper refines every step of the workflow before feature extraction, which can reduce error propagation. The workflow takes the advantage of high-quality alignment method, more accurate landmark detector, and also more robust optical flow estimation. Besides, Bayesian optimization hybrid with Nash equilibrium is constructed to search for the optimal parameters. It uses two players to optimize two types of parameters, one player is used to control the ME peak spotting, and another for optical flow field extraction. The algorithm can reduce the search space for each player with better generalization. Finally, our spotting method is evaluated on MEGC2022 spotting task, and achieves F1-score 0.3564 on CAS(ME)3-UNSEEN and F1-score 0.3265 on SAMM-UNSEEN.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"69 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3551602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Micro-expressions (MEs) spotting is popular in some fields, for example, criminal investigation and business communication. But it is still a challenging task to spot the onset and offset of MEs accurately in long videos. This paper refines every step of the workflow before feature extraction, which can reduce error propagation. The workflow takes the advantage of high-quality alignment method, more accurate landmark detector, and also more robust optical flow estimation. Besides, Bayesian optimization hybrid with Nash equilibrium is constructed to search for the optimal parameters. It uses two players to optimize two types of parameters, one player is used to control the ME peak spotting, and another for optical flow field extraction. The algorithm can reduce the search space for each player with better generalization. Finally, our spotting method is evaluated on MEGC2022 spotting task, and achieves F1-score 0.3564 on CAS(ME)3-UNSEEN and F1-score 0.3265 on SAMM-UNSEEN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微表情识别光流方法的再思考
微表情识别在刑事侦查、商务沟通等领域非常流行。但是,在长视频中准确地发现微信号的开始和偏移仍然是一项具有挑战性的任务。在特征提取之前,对工作流程的每一步都进行了细化,减少了误差的传播。该工作流程具有高质量的对准方法、更精确的地标检测器和更鲁棒的光流估计等优点。在此基础上,构造了贝叶斯优化与纳什均衡相结合的混合优化算法来寻找最优参数。它使用两个播放器来优化两类参数,一个播放器用于控制ME峰定位,另一个播放器用于光流场提取。该算法可以减少每个玩家的搜索空间,具有较好的泛化性。最后,对我们的方法在MEGC2022上的定位任务进行了评估,在CAS(ME)3-UNSEEN上取得了f1 -得分0.3564,在SAMM-UNSEEN上取得了f1 -得分0.3265。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Anti-Bottleneck Multi-Modal Graph Learning Network for Personalized Micro-video Recommendation Composite Photograph Harmonization with Complete Background Cues Domain-Specific Conditional Jigsaw Adaptation for Enhancing transferability and Discriminability Enabling Effective Low-Light Perception using Ubiquitous Low-Cost Visible-Light Cameras Restoration of Analog Videos Using Swin-UNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1