Subband optimization for EEG-based classification of movements of the same limb

M. Dobias, J. Št'astný
{"title":"Subband optimization for EEG-based classification of movements of the same limb","authors":"M. Dobias, J. Št'astný","doi":"10.1109/AE.2014.7011671","DOIUrl":null,"url":null,"abstract":"The contribution investigates the impact of frequency feature optimization on discriminating between movement-related EEG realisations associated with right shoulder elevation and right index finger flexion movements. Exhaustive search of subbands in the range from 5 to 45 Hz is performed. A classifier based on Hidden Markov Models is utilised. The results show a large variability of optimal settings among subjects and electrodes. Using subband optimization an average 3.5% increase in classification accuracy of EEG filtered using 8-neighbor Laplacian filter was achieved, reaching an overall score of 81.2±1.2%, individual improvements ranging from 1.2 to 9.9%. The best general setting common for all subject was confirmed as 5-40 Hz.","PeriodicalId":149779,"journal":{"name":"2014 International Conference on Applied Electronics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Applied Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AE.2014.7011671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The contribution investigates the impact of frequency feature optimization on discriminating between movement-related EEG realisations associated with right shoulder elevation and right index finger flexion movements. Exhaustive search of subbands in the range from 5 to 45 Hz is performed. A classifier based on Hidden Markov Models is utilised. The results show a large variability of optimal settings among subjects and electrodes. Using subband optimization an average 3.5% increase in classification accuracy of EEG filtered using 8-neighbor Laplacian filter was achieved, reaching an overall score of 81.2±1.2%, individual improvements ranging from 1.2 to 9.9%. The best general setting common for all subject was confirmed as 5-40 Hz.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脑电图的同一肢体运动分类的子带优化
该贡献研究了频率特征优化对区分与右肩抬高和右食指屈曲运动相关的运动相关EEG实现的影响。在5 ~ 45hz范围内的子带进行穷举搜索。使用了基于隐马尔可夫模型的分类器。结果显示,受试者和电极之间的最佳设置存在很大差异。经子带优化后,8邻域拉普拉斯滤波的脑电分类准确率平均提高3.5%,总体得分为81.2±1.2%,单项准确率提高幅度在1.2 ~ 9.9%之间。确定所有受试者的最佳通用设置为5-40 Hz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D FEM simulation of small stripline for EMC testing Effect of dead times on the values of input current harmonics drawn from the grid by a voltage-source active rectifier Desktop based real time oxygen auto-ventilation and gas monitoring system for homecare respiratory application Fuzzy expert system for determining the human gait phase Dead-time compensation strategy with adaptive harmonic compensator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1