An Experimental Study for Comparing Different Method for Time Series Forecasting Prediction & Anomaly Detection

Rishik Sharma, Neha R. Singh, S. Birla
{"title":"An Experimental Study for Comparing Different Method for Time Series Forecasting Prediction & Anomaly Detection","authors":"Rishik Sharma, Neha R. Singh, S. Birla","doi":"10.1109/ICECCT52121.2021.9616662","DOIUrl":null,"url":null,"abstract":"Time series forecasting is used to detect some anomaly, that is, any unusual or unrequired events in network traffic, so that it can be removed while using the dataset for further processing. Anomaly detection is very helpful in reducing the operation call. This paper compares different models for detecting anomaly in computer networks using time series forecasting methods with reduced error rates.","PeriodicalId":155129,"journal":{"name":"2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCT52121.2021.9616662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Time series forecasting is used to detect some anomaly, that is, any unusual or unrequired events in network traffic, so that it can be removed while using the dataset for further processing. Anomaly detection is very helpful in reducing the operation call. This paper compares different models for detecting anomaly in computer networks using time series forecasting methods with reduced error rates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间序列预测预测与异常检测方法比较实验研究
时间序列预测用于检测一些异常,即网络流量中任何不寻常或不需要的事件,以便在使用数据集进行进一步处理时将其删除。异常检测有助于减少操作调用。本文比较了利用时间序列预测方法检测计算机网络异常的不同模型,这些模型的错误率较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Capacitor Clamped Boost Inverter for Fuel Cell-based Distributed Generation system with Battery Back Up An End-To-End 1D-ResCNN Model For Improving The Performance Of Multi-parameter Patient Monitors Urban Flood Susceptibility Mapping of Kochi Taluk Using Remote Sensing and GIS Strong Single-Arm Latch Comparator with Reduced Power Consumption Quantum Computing: Challenges and Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1