{"title":"Rapid Routing with Guaranteed Delay Bounds","authors":"Sanjoy Baruah","doi":"10.1109/RTSS.2018.00012","DOIUrl":null,"url":null,"abstract":"We consider networks in which each individual link is characterized by two delay parameters: a (usually very conservative) guaranteed upper bound on the worst-case delay, and an estimate of the delay that is typically encountered, across the link. Given a source and destination node on such a network and an upper bound on the end-to-end delay that can be tolerated, the objective is to determine routes they typically experience a small delay, while guaranteeing to respect the specified end-to-end upper bound under all circumstances. We formalize the problem of determining such routes as a shortest-paths problem on graphs, and derive algorithms for solving this problem optimally.","PeriodicalId":294784,"journal":{"name":"2018 IEEE Real-Time Systems Symposium (RTSS)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2018.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
We consider networks in which each individual link is characterized by two delay parameters: a (usually very conservative) guaranteed upper bound on the worst-case delay, and an estimate of the delay that is typically encountered, across the link. Given a source and destination node on such a network and an upper bound on the end-to-end delay that can be tolerated, the objective is to determine routes they typically experience a small delay, while guaranteeing to respect the specified end-to-end upper bound under all circumstances. We formalize the problem of determining such routes as a shortest-paths problem on graphs, and derive algorithms for solving this problem optimally.