A constraint to automatically regulate document-length normalisation

Ronan Cummins, C. O'Riordan
{"title":"A constraint to automatically regulate document-length normalisation","authors":"Ronan Cummins, C. O'Riordan","doi":"10.1145/2396761.2398662","DOIUrl":null,"url":null,"abstract":"Retrieval functions in information retrieval (IR) are fundamental to the effectiveness of search systems. However, considerable parameter tuning is often needed to increase the effectiveness of the retrieval. Document length normalisation is one such aspect that requires tuning on a per-query and per-collection basis for many retrieval functions. In this paper, we develop an approach that regularises the level of normalisation to apply on a per-query basis. We formally describe the interaction between query-terms and document length normalisation using a constraint. We then develop a general pre-retrieval approach to adapt a number of state-of-the-art ranking functions so that they adhere to the constraint. Finally, we empirically demonstrate that the adapted retrieval functions outperform default versions of the original retrieval functions, and perform at least comparably to tuned versions of the original functions, on a number of datasets. Essentially this regulates the normalisation parameter in a number of retrieval functions on a per-query basis in a principled manner.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2398662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Retrieval functions in information retrieval (IR) are fundamental to the effectiveness of search systems. However, considerable parameter tuning is often needed to increase the effectiveness of the retrieval. Document length normalisation is one such aspect that requires tuning on a per-query and per-collection basis for many retrieval functions. In this paper, we develop an approach that regularises the level of normalisation to apply on a per-query basis. We formally describe the interaction between query-terms and document length normalisation using a constraint. We then develop a general pre-retrieval approach to adapt a number of state-of-the-art ranking functions so that they adhere to the constraint. Finally, we empirically demonstrate that the adapted retrieval functions outperform default versions of the original retrieval functions, and perform at least comparably to tuned versions of the original functions, on a number of datasets. Essentially this regulates the normalisation parameter in a number of retrieval functions on a per-query basis in a principled manner.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动调节文档长度规范化的约束
信息检索中的检索功能是保证检索系统有效性的基础。然而,通常需要大量的参数调优来提高检索的有效性。文档长度规范化就是这样一个方面,它需要在每个查询和每个集合的基础上对许多检索函数进行调优。在本文中,我们开发了一种方法,可以在每个查询的基础上规范规范化的级别。我们使用约束正式描述查询项和文档长度规范化之间的交互。然后,我们开发了一种通用的预检索方法,以适应许多最先进的排名函数,使它们遵守约束。最后,我们通过经验证明,在许多数据集上,经过调整的检索函数优于原始检索函数的默认版本,并且至少与原始函数的调优版本相当。从本质上讲,这以有原则的方式在每个查询的基础上规范了许多检索函数中的规范化参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting web search success with fine-grained interaction data User activity profiling with multi-layer analysis Search result presentation based on faceted clustering Domain dependent query reformulation for web search CrowdTiles: presenting crowd-based information for event-driven information needs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1