Research on Mixed Transaction Analytical Data Management Oriented to Data Middle Platform

Aihua Zhou, Li-Peng Zhu, Meng Xu, Sen Pan, Junfeng Qiao, Hongyan Qiu, Song Deng
{"title":"Research on Mixed Transaction Analytical Data Management Oriented to Data Middle Platform","authors":"Aihua Zhou, Li-Peng Zhu, Meng Xu, Sen Pan, Junfeng Qiao, Hongyan Qiu, Song Deng","doi":"10.1109/PIC53636.2021.9687022","DOIUrl":null,"url":null,"abstract":"To solve the problem of non-synchronization between enterprise application development and data development, this paper puts forward the concept of data middle platform, which combines the two data processing mechanisms of online analytical processing (OLAP) and online transaction processing (OLTP), so that faster and better data services can be provided to the foreground business. On this basis, this paper summarizes the research status of the related technologies of the data middle platform, including the architecture of the data middle platform and the key technologies of constructing the data middle platform. In-depth analysis of the business scale and business characteristics of OLTP and OLAP in various application scenarios, focusing on the technical difficulties in the application process of OLTP and OLAP in the application scenario. Finally, it summarizes the challenges faced by the basic research from three aspects: the construction of data middle platform, data quality assurance, and the application of mixed-thing analytical data management.","PeriodicalId":297239,"journal":{"name":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC53636.2021.9687022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To solve the problem of non-synchronization between enterprise application development and data development, this paper puts forward the concept of data middle platform, which combines the two data processing mechanisms of online analytical processing (OLAP) and online transaction processing (OLTP), so that faster and better data services can be provided to the foreground business. On this basis, this paper summarizes the research status of the related technologies of the data middle platform, including the architecture of the data middle platform and the key technologies of constructing the data middle platform. In-depth analysis of the business scale and business characteristics of OLTP and OLAP in various application scenarios, focusing on the technical difficulties in the application process of OLTP and OLAP in the application scenario. Finally, it summarizes the challenges faced by the basic research from three aspects: the construction of data middle platform, data quality assurance, and the application of mixed-thing analytical data management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向数据中间平台的混合事务分析数据管理研究
为了解决企业应用开发与数据开发不同步的问题,本文提出了数据中间平台的概念,将联机分析处理(online analytical processing, OLAP)和联机事务处理(online transaction processing, OLTP)两种数据处理机制结合起来,为前台业务提供更快更好的数据服务。在此基础上,本文总结了数据中间平台相关技术的研究现状,包括数据中间平台的体系结构和构建数据中间平台的关键技术。深入分析OLTP和OLAP在各种应用场景下的业务规模和业务特点,重点分析OLTP和OLAP在应用场景下应用过程中的技术难点。最后,从数据中间平台建设、数据质量保障、混合物分析数据管理应用三个方面总结了基础研究面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Construction of Learning Diagnosis and Resources Recommendation System Based on Knowledge Graph Classification of Masonry Bricks Using Convolutional Neural Networks – a Case Study in a University-Industry Collaboration Project Optimal Scale Combinations Selection for Incomplete Generalized Multi-scale Decision Systems Application of Improved YOLOV4 in Intelligent Driving Scenarios Research on Hierarchical Clustering Undersampling and Random Forest Fusion Classification Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1